Heart Failure Update: A Device Perspective

James L. Cockrell, Jr., MD

Founding Director, Cardiac Electrophysiology Washington Adventist Hospital

April 13th, 2013

What is Heart Failure?

Heart Failure: Defined

□A syndrome of inadequate tissue perfusion
 (or the requirement for higher cardiac volumes or filling pressures to maintain perfusion)

Heart Failure: Abnormal Mechanics

Heart Failure:

- □ Cardinal Manifestations
 - □ Dyspnea and fatigue –often limiting exercise
 - ☐ Fluid retention —leading to pulmonary and peripheral edema
 - □ Impaired quality-of-life
- □ Progressive disorder
 - ☐ Symptoms eventually at rest or with minimal exertion
 - Deterioration of cardiac structure and function without recurrent injury, "silently"

The Epidemic of Heart Failure

A Growing Medical Challenge

Heart failure management

Congestive heart failure worldwide markets, clinical status and product development opportunities. *New Medicine, Inc.* 1997:1-40. Wilkerson Group Survey, 1998.

Doubles Incidence of Heart Failure by Age every decade **Framingham Results** 35 31 Men 30 Women 25 Average incidence/ 20 1000/year 15 10 5

55-64

85-94

75-84

65–74

Age (years)

45-54

Prevalence by severity (NYHA Class)

70 % of patients have little or no symptoms

Class II 1.68 M (35%)

Class I

No limitations of physical activity

Class II

Slight limitations

Class III

Marked limitations

Class IV

Symptoms at rest

Heart Failure Hospitalizations

CDC/NCHS: Hospital discharges include living patients and in hospital deaths

Causes of Hospital Readmission for Congestive Heart Failure

Therapeutic Goals

Treatment Goals for Heart Failure Therapy

Goal: Improve the Quality and Quantity of Life Objectives

- □ Relieve symptoms and improve exercise tolerance
- Prevent sudden death, arrhythmias
- □ Slow progression of the underlying disease
- Decrease ER visits, hospitalizations, and costs
- □ Prevent complications, such as atrial fibrillation, stroke

Historical Therapy For Heart Failure

Drug Therapy

Enalapril Reduces Mortality in Heart Failure (SOLVD trial 1991)

compared to placebo, decreases patient mortality in NYHA class II and III heart failure (p = 0.0036). (Data from The SOLVD Investigators, N

Engl J Med 1991; 325:293.)

Metoprolol Reduces Mortality in Heart Failure

(MERIT-HF trial 1999)

Metoprolol reduces mortality in patients with heart failure The MERIT-HF trial randomized 3991 patients with NYHA class II to IV heart failure who were treated with digoxin, angiotensin converting enzyme inhibitors, and digoxin to metoprolol CR/XL or placebo. Kaplan-Meier curves show a significant reduction in total mortality at 12 months with metoprolol (7.2 versus 11 percent for placebo, p = 0.006). (Data from The MERIT-HF Study Group, Lancet 1999; 353:2001).

Spironolactone Reduces Mortality in Heart Failure (RALES trial 1999)

Spironolactone reduces mortality in heart failure Kaplan-Meier analysis of survival among 1663 patients with advanced heart failure in the RALES trial shows that spironolactone reduces mortality by 30 percent (35 versus 46 percent for placebo, p<0.001). (Data from Pitt, B, Zannad, F, Remme, WJ, et al, N Engl J Med 1999; 341:709.)

Results of Heart Failure Therapy

More than one drug is needed and they work synergistically

 Optimal drug therapy in combination reduces mortality by about a third

So How Could Device Therapy Help?

Mechanism of Death in HF¹

NYHA class II

No. of deaths n = 103

NYHA class III

No. of deaths n = 232

NYHA class IV

No. of deaths n = 27

Magnitude of SCA in the US

SCA claims more lives each year than these other diseases combined

450,000 SCA⁴

#1 the U.S.

¹ U.S. Census Bureau, Statistical Abstract of the United States: 2001.

² American Cancer Society, Inc., Surveillance Research, Cancer Facts and Figures 2001.

³ 2002 Heart and Stroke Statistical Update, American Heart Association.

⁴ Circulation. 2001;104:2158-2163.

SCD: Ventricular Fibrillation

The Defibrillator

The Implantable Defibrillator Then

- □Initially
 Defibrillation only
- □Surgical implant during CABG
- □Evolution to Subclavicular

ICD Trials Summary

Relative Reduction in All-cause Mortality

Results of Heart Failure Therapy

- Optimal drug therapy in combination reduces mortality by about a third
- Defibrillator therapy improves survival an additional 25 to 30%

An interesting Observation

Heart Failure: Assynchronous Mechanics:

Normal Sinus Rhythm

Left Bundle Branch Block

Prevalence and Prognosis of Ventricular Dysynchrony

LBBB More Prevalent with Impaired LV Systolic Function

- 1. Masoudi, et al. JACC 2003;41:217-23
- 2. Aaronson, et al. Circ 1997;95:2660-7

QRS >

120 ms

3. Iuliano et al. AHJ 2002;143:1085-91

QRS <

120 ms

Abnormal Ventricular Activation

CRT: Three-chamber Pacing

MIRACLE: 2002

Multi-center In Sync Randomized Clinical Evaluation Trial

- □ Double blinded RCT
- ☐ **First** US trial
- □ NYHA Class III or IV, on OPT, QRS >130 ms, EF<35%</p>
- □ Enrollment of 453 patients

MIRACLE

Nonresponders: older, ischemic CM, no MR, QRS<150 Responders: had shorter duration on CHF and longer QRS>155

Pivotal Study Phase CRT Improves NYHA Class

Control (N = 117)

CRT (N = 124)

Improved Cardiac Mechanics with CRT

Trans-mitral Flow

Could the addition of defibrillator therapy to CRT therapy Help?

COMPANION Study

Comparison of Medical Therapy,
Pacing and Defibrillation In Heart
Failure

COMPANION: Primary Hypotheses

In Patients with advanced heart failure and QRS widening, when used in conjunction with optimal pharmacologic therapy:

□ Bi-ventricular cardiac resynchronization therapy (CRT) alone, or in combination with defibrillation (CRT-D) decreases all-cause mortality and all-cause hospitalization.

COMPANION: Results

COMPANION: All-Cause Deaths

12 month Event-Rate

Bristow MR, Saxon LA et al: Companion Investigators, March 2003

COMPANION: Reduction in HF Hospitalization with Therapy

Hospitalizations in the first 12 months

Results of Heart Failure Therapy

- Optimal drug therapy in combination reduces mortality by about a third
- □ Defibrillator therapy improves survival an additional 25 to 30%
- Cardiac resynchronization therapy in combination with above expands the survival benefit and reduces hospitalizations

The ICD Today: A Cardiac Performance Management System

- □Advanced Pacing
- □CRT
- □Remote wireless
 Monitoring
- □Defibrillation
 Therapy

James L. Cockrell, Jr., MD

Founding Director, Cardiac Electrophysiology Washington Adventist Hospital

Sudden Cardiac Death Primary Prevention Protocols

Learn more at www.HRSonline.org

35% for Non-Ischemic Cardiomyopathy **Ejection Fraction** 40% for Ischemic Cardiomyopathy Any Post-Mi or ischemic Any Cardiomyopathy Cardiomyopathy Post-MI Cardiomyopathy With Revascularization Beyond ICD Waiting Period Not on Optimal Without Revascularization (PCI or CAB) on Optimal Medical Therapy Medical Therapy ICD Waiting Period > 40 Days ICD Waiting Period > 3 Months Initiate or Titrate Medical Therapy Beta Blocker — ACE/ARB — Aldosterone Antagonist Discharge Home; Continue Optimization of Medical Therapy Consider Consultation with Heart Rhythm Specialist/Consider Wearable Cardioverter Defibrillator Reassess EF @ 3 Months Reassess EF @ 40 Days Consider Further Risk Stratification/ Non-Ischemic Ischemic EF = 36-40% Consultation with Heart Rhythm Specialist* Cardio-Cardiomyopathy EF < 35%

Refer for Consultation with Heart Rhythm Specialist

* Buxton AE, Lee KL, Fisher JD, Josephson ME, Prystowsky EN, Hafley G. A randomized study of the prevention of sudden death in patients with coronary artery disease. Multicenter Unsustained Tachycardia Trial Investigators. N Engl J Med. December 16, 1999;341(25):1882-1890.

Recommended by SCA Prevention Protocols Working Group (Version 2; Revised: 9/10/2012; Review date: 9/10/2013) All Rights Reserved. Copyright • 2012 Heart Rhythm Society

LifeVest A Proven Treatment Option

Patients with Low EF Following PCI WCD Reduces Total Mortality

- Post-PCI low EF (≤35%) patients prescribed the WCD had an 80% lower 90-day mortality (2%) compared to a matched cohort of patients not prescribed the WCD (10%)¹
- Post-PCI patients prescribed the WCD had a 57% lower risk of death (p<0.0001) over a mean follow-up of over 3 years¹
- Following the end of WCD use, a continued survival benefit was observed out to 3 years
 - WCD is commonly worn by patients for 90 days following PCI

¹ Zishiri, E et al. Use of the Wearable Cardioverter Defibrillator and Survival After Revascularization in Patients with Left Ventricular Dysfunction. 2011;124:A9816.

Indications: Bridge to ICD

- Post Myocardial Infarction with low EF (\leq 35%)
 - < 40 days after MI
 - < 90 post CABG
 - < 90 post PTCA
- Non-ischemic cardiomyopathy
 - < 3 months from diagnosis (90-270 days)
- ICD requires explantation
- Pre transplant, NYHA Class IV

Complications of Heart Failure

When All Else Fails?

Results with LVAD Therapy

- □ 280 Patients
- □ 27% in-hospital mortality
- □ 56% one year survival

Circ 2007;116:497-505

A normal heart pumps blood in a smooth and synchronized way.

Heart Transplantation

- A good solution to the failing heart— get a new heart
- Unfortunately we are limited by supply, not demand
- Approximately 2200 transplants are performed yearly in the US, and this number has been stable for the past 20 years.

Worldwide Heart Transplants

The Future of Device Therapy For Heart Failure

- □ Adaptive CRT
- □ Refinement of implanted systems from cardiac rhythm management (CRM) to that of cardiac performance management (CPM) systems

The ICD Today

- □Defibrillation
- □Synchronized Cardioversion
- □Anti-tachycardia
 Pacing (ATP)
 Therapy

Anti-tachycardia Therapy: Success

Episode duration = 5.3 s

n M, Sweeney M, DeGroot P. Circulation. 2001; 104: 796-801.

Anti-tachycardia Therapy

ATP Efficacy = 90-95% ¹⁻³

Heart Failure: Treatment Strategies

Clinical Goal	Treatments
Quality of Life (Symptom Relief)	Diuretics Inotropes (acute) Vasodilators
Prevent Progression	Ace Inhibitors B Blockade
Survival	Ace Inhibitors B Blockade ICDs
Reverse Remodeling	Heart Transplant

The Importance of the Sequence of Ventricular Activation

Contrasting Mechanics

Issues Associated with Heart Failure

Cardiac resynchronization therapy (CRT)-global synchrony

Baseline

DCM - CRT

Issues Associated with Heart Failure

Cardiac resynchronization therapy (CRT)-global synchrony

Mitral Valve Function

Courtesy of Ottawa Heart Institute Resynchronization OFF Resynchronization ON

Diastolic Filling

Issues Associated with Heart Failure

Resynchronization ON

Cardiac resynchronization therapy (CRT)-global synchrony

Mitral Valve Function

Courtesy of Ottawa Heart Institute

Resynchronization OFF

Diastolic Filling

Cardiac Resynchronization Therapy

Early Results

MIRACLE Pivotal Phase CRT Improves 6-Minute Hall Walk Distance

Pivotal Study Phase CRT Improves NYHA Class

Control (N = 117)

CRT (N = 124)

MIRACLE: Conclusions

In NYHA Class III and IV systolic heart failure patients with intraventricular conduction delays, CRT

- □ is safe and well tolerated
- □ improves Quality of Life, functional class, and exercise capacity
- □ improves cardiac structure and function
- □ improves heart failure composite response

Cumulative Enrollment in Cardiac Resynchronization Randomized Trials

PATH-CHF: 1999

Pacing Therapy for Congestive Heart Failure

- □ This was the <u>first multicenter trial</u> and used the standard endocardial RV lead and an <u>epicardial</u> LV lead via thoracotomy or thorascope
- □ Single blinded RCT
- □ 53 centers in Europe
- □ **41** patients

PATH-CHF

Implant

NYHA class III-IV DCM QRS > 120 ms

Acute hemodynamic testing

Randomization 1:1

4 weeks

Best single chamber

CRT

8 weeks

No CRT

No CRT

12 weeks

CRT

Best single chamber

One year

Best mode

PATH-CHF

□ Primary endpoints □ Peak VO2 ☐ Six-minute walk distance Secondary endpoints ☐ Minnesota Living with Heart Failure score (QOL) ■ NYHA class □ EF ☐ Trend towards decrease in Hospitalizations Acute hemodynamic testing revealed that the lateral and posterolateral walls were the best target sites. The best responders were those with QRS>150, long PR and dP/dt < 700 mm Hg/s

MUSTIC: 2001 Multicenter Stimulation in CM

- □ European study with 67 patients
- ☐ QRS>150, CHF, EF <35%
- □ BiVP versus backup VVI pacing at 40 BPM
- Increase in 6 minute walk time, QOL and Peak VO2 with BiVP and persisted for up to 12 months
- □ 60% decrease in CHF hospitalizations
- ☐ First to use endocardial LV leads via the CS
- No significant change in mortality, but a trend towards an improvement.
- Acute hemodynamic studies showed the <u>mid</u>
 <u>lateral wall</u> to be the best site

Reverse Remodeling with CRT

Changes in LVEF, (%) meadian +/- 95% CI

Cardiac Resynchronization Therapy

Myocardial Energetics

Acute Results With CRT

An immediate hemodynamic response

^{*}Voltage scale amplified.

Reprinted with permission.

Auricchio A, Stellbrink C, Block M, et al. Effect of pacing chamber and atrioventricular delay on acute systolic function of paced patients with congestive heart failure. *Circulation*. 1999;99:2995.

Cardiac Resynchronization Therapy

- □ A reduction in heart failure symptoms
- □ Improvement in cardiac performance

Can such therapy reduce hospitalization and improve survival?

Reduced Mortality in Heart Failure

ACE-I & Beta Blockade Reduce Mortality

Further Reduction with CRT + ICD for Higher Risk Patients

Adapted from McMurray JJV; Heart 1999; 82(Suppl IV):IV14-IV22

CRT: Moderate to severe systolic heart failure with wide QRS

Conclusions

- □ Large number of patients studied in RCTs
- □ Concordant proof that CRT improves quality of life, exercise capacity, functional capacity
 - □ Improvements persist through 1 year
- CRT reduces the risk of mortality and heart failure due to worsening HF
- □ CRT + ICD reduces risk of mortality
- CRT improves cardiac function and structure

Heart Failure Device Therapy

Cardiac rhythm management technology

Cardiac Resynchronization Therapy Overview

Cardiac Resynchronization Therapy Effect on LV Size and Function (MIRACLE)

Paired, Median Changes from Baseline

St. John Sutton M, et al. *Circulation* 2003;107:1985-1990

Effect of ß-blocker Therapy

Paired, Median Changes from Baseline at 6 Months

* p < 0.05, CRT vs. Control within subgroups † p < 0.05, CRT vs. CRT between subgroups

St. John Sutton M, et al. *Circulation* 2003;107:1985-1990

LV Reverse Remodeling after CRT

LV End Systolic and Diastolic Volumes

225-Left ventricular volume (mL) 150-100off-immed off-1wk Baseline 1wk 3mo off-4wk 1_{mo}

MR area

LV Reverse Remodeling after CRT

LV End Systolic and Diastolic Volumes

Cardiac Resynchronization Therapy Improves Quality of Life and NYHA

Average Change in Class

Average Change in NYHA: Proportion Improving

QoL Score (MLWHF)

1 or More Class

- 1. NEJM 2002;346:1845-53
- 2. NEJM 2001:344:873-80
- 3. Eur Heart J 2002;23:1780-1787
- 4. http://www.fda.gov/cdrh/pdf/P010012b.pdf. Accessed August 2, 2002

Doug Smith:

03; 289:2685-94

Cardiac Resynchronization Therapy

Average Change in 6 Minute Average Change in Peak VO2

Walk Distance

- 1. NEJM 2002;346:1845-53
- 2. NEJM 2001;344:873-80
- 3. http://www.fda.gov/cdrh/pdf/P010012b.pdf. Accessed August 2, 2002

03; 289:2685-94 Doug Smith:

Benefits Sustained Through 1 Year

Change from baseline in 6 minute walk distance

Change from baseline in NYHA Class

Change from baseline in QoL (MLWHF) Score

- 1. World Congress of Cardiology 2002 (MIRACLE)
- 2. Eur J Heart Fail 2002;4:311-20 (InSync Europe & Canada)
- 3. JACC 2002;4:111-8 (MUSTIC)

Cardiac Resynchronization Therapy: An Adjunct to Optimal Medical Therapy

Change from baseline in 6 minute walk distance

Change from baseline in CPX Duration

Change from baseline in QoL (MLWHF) Score

1 NEJM 1993;329:1-7 (RADIANCE)

2 Circulation 1996;94:2793-2799 (PRECISE)

3 JAMA 1988:259:539-544

4 Am J Cardiol 1993;71:1106-1107 (SOLVD Treatment)

5 *J Cardiac Failure* 1997;3:173-179

6 NEJM 2002;346:1845-53 (MIRACLE)

Who Responds to Cardiac Resynchronization?

Responder Parameter(s)	Finding	Limitation(s)
NYHA III/IV, QRS≥ 130 ms, EF≤ 35%, LVEDD≥ 55 mm	Confirmed in RCTs of over 2,500 patients	□~ 70% respond favorably
QRS ≥ 150/155 and/or dP/dt ≤ 700 mm Hg/s	Correlated with improved dP/dt ^{1,2}	□Small studies, < 30 pts; □No clinical endpoint □not confirmed by MIRACLE
Difference in time to peak systolic contraction	Correlated with ↓ volumes ^{3,4,5}	□Small studies, ≤ 30 pts; □Varying techniques □No clinical endpoint
. Circulation. 2000;101:2703-2709 4. . Circulation 1999:99:2993-3001 5. . Am O Cardiol 2001;ficant mitral 6. mith: purgitation	J Am Coll Cardiol 2002;40:1615-1622 J Am Coll Cardiol 2002;40:723-730 And Feliator Supply 15:340:723-730 NYHA ⁶	□Observational study; □not confirmed by MIRACLE

Improved Cardiac Function Without Oxidative Stress

Nelson et al. Circulation 2000;102:3053-3059

Ukkonen et al. Circulation 2003;107:28-31

Cardiac Resynchronization Therapy Does Not Promote Ventricular Arrhythmias

- □ Analyzed 1,044 patients
 with ICDs from 2 trials:
 - □ CONTAK CD
 - ☐ MIRACLE ICD
- □ Odds ratio (CI):0.92 (0.67 1.27)

Patients with VT or VF during Follow-up

Bradley DJ, et al. JAMA 2003;289:730-740

Relative Cost of CRT

Multicenter Automatic Defibrillator Implantation Trial - II

MADIT-II Hypothesis

ICD therapy is able to reduce overall mortality assuming:

- Mortality in control = 19%
- Mortality in ICD = 11.8%
- 38% reduction in mortality at 2 years

MADIT-II Inclusion Criteria

- \square Q-wave MI \geq 4 weeks
- □ LVEF < 0.30
- $\square \ge 21$ years of age; no upper age limitation
- □ No requirement for NSVT or EPS

MADIT-II Exclusion Criteria

- □ Indication for ICD approved by FDA
- □ NYHA Class IV at enrollment
- □ CABG < 3 months
- □ Q-wave MI < 4 weeks</p>
- □ Advanced cerebrovascular disease
- □ High likelihood of death during trial

MADIT-II Endpoints

Primary:

☐ All cause mortality (intention-to-treat analysis)

Secondary:

- Predictability of ICD discharge based on VT inducibility at EPS
- Usefulness of SAECG, HRV, TWA in predicting mortality or ICD discharge
- □ Cost-effectiveness
- □ Quality of life

MADIT-II Protocol

Inclusion criteria

ICD implant n=742

(EPS after implant)

No-ICD implant n=490

(Conventional Post-MI drug Rx)

20 months mean follow- up

- Avoid AAD
- Optimize: BB, ACE-I, Diuretics

MADIT-II Patient Characteristics

	Conventional Rx	ICD Rx
	n =490	n=742
LVEF (mean)	23%	23%
AMI > 6 mos	87%	88%
AGE (mean)	64 yr	65 yr
Prior CABG	56%	58%
Prior PTCA	42%	45%

MADIT-II Patient Characteristics

	Conventional Rx	ICD Rx
	n =490	n=742
NYHA Class I	39%	35%
II	34%	35%
III	23%	25%
I\/	4%	5%
QRS interval ≥ 0.12 sec	50%	51%

MADIT-II Patient Characteristics

Medications at	Conventional Rx	ICD Rx
Last Contact	n =490	n=742
ACE I	72%	68%
Beta Blockers	70%	70%
Lipid Lowering Statins	64%	67%
Digitalis	57%	57%
Amiodarone	10%	13%
Class I AA	2%	3%

MADIT-II Results

	Conventional Rx	ICD Rx
	n =490	n=742
Lead Problems	_	1.8%
Non-fatal Infections	_	0.7%
Infections Heart Failure Hospitalization	14.9%	19.9%

MADIT-II Conclusions

For post-MI patients with LVEF ≤ 30%:

□ ICD therapy significantly reduced the incidence of overall mortality by 31%

 □ ICD therapy provided significant benefit among patients who were on optimal drug therapies.

MADIT-II Survival Results

MADIT-II Statistical Analysis Triangular Sequential Design

Sequential Monitoring in the Triangular Design

Mortality rate by type of therapy

MADITT-II, mean follow-up 20 months

MADIT-II: Survival Results

MADIT-II: Survival Results

Hospitalizations for <u>heart failure</u> by type of therapy

MADITT-II, mean follow-up 20 months

