Three Dimensional Echocardiography

Past, Present, and Future

J. Cullen Hardy, MD, FACC
The Cardiovascular Group at Selma
Overview

- History of echocardiography
- History of 3-D echo
- Current utility
- Specific examples
- Future directions
History of Echocardiography

Single dimensional (M-Mode) Echo
History of Echocardiography

Two dimensional Imaging
1980's-90's
Additional Historic Advances

- Doppler velocity tracings
- Color Doppler imaging
- Transesophageal imaging (TEE)
- Intravascular ultrasound (IVUS)
- Harmonic imaging
- Contrast perfusion imaging
Limitations of 2-D Imaging

- Limited acquisition windows
- Theoretically more time consuming acquisition
- Incomplete view of a single structure
- Loss of structural orientation/spatial relationships
- Lack of volume or mass measurements
- Poor quantification of regurgitant lesions
- Inherent increased learning curve
Art History

Pre Perspective

- Initial word panel of Psalm--14th C.

Post Perspective

- Raphael: School of Athens--15th C.
Prince of Egypt
Live 3D Echo
Historical Perspective of Echo

A-mode
B-Mode
Doppler
TEE
Live 3D

M-Mode
Real-time
Color
Gated-3D

[Images of different echo modes and technologies]
History of 3-D Echocardiography

Free-hand Scanning Method

- Developed in the early 80's
- Utilized multiple separate imaging planes
- Images aligned using acoustic locator system
- Acquired over several heart beats
- Reconstructed off-line with hand tracing
- Used for LV volume and mass measurements
History of 3-D Echocardiography

Gated Sequential Scanning

- Developed in the early 90's
- Utilized a single acquisition window
- Mechanically rotated the transducer
- ECG/Respiratory gated
- Acquired over several heart beats
- Reconstructed off-line
Live 3D Echo Data Acquisition

- Sequential acquisition
- Manual method
  - Parallel
  - Fan-like
  - Free surface
- Automated method
  - Rotational
  - Fan-like
  - Parallel
History of 3-D Echocardiography

Real Time (Live) 3-D

- Initial development in mid 80's
- Transducer technology
  - Sparse array: 256 elements
  - Full matrix array: 3000 elements
- Simultaneous image acquisition
  - Multiple planes simultaneously
  - Single heart beat
- Image processing on-line
Live 3D Echo
Sparse Arrays

▪ Real-time
▪ Limited image quality
  ▶ Weak sensitivity
  ▶ Potentially poor resolution
▪ ~300 elements
Live 3D Echo
X- Matrix Array

- Real-time volume acquisition
- Excellent image quality
- ~3000 elements and electrical connections
Live 3D Echo
X-Matrix Technology

- Sensor Fabrication

Microscopic photo of top view xMATRIX posts

Human hair
Live 3D Echo Technology

xSTREAM Architecture

- Super-computed processing
- Processes multiple data streams simultaneously
- Incorporates a processing environment capable of 250 billion operations per second
3-D Echo Acquisition
Live 3D Echo
Types of 3D Data Sets

- **Live 3D**
  - A real-time mode allowing immediate acquisition and visualization in 3D

- **3D Zoom**
  - A real-time mode used for specific regions of the heart

- **Full Volume (FV)**
- **Color Full Volume (FV)**
  - Fast triggered mode to acquire high resolution anatomic structures in larger volumes
  - FV mode acquires high resolution color flow of hemodynamic patterns/shapes in 3D
Current Applications

- Ejection fraction calculation
  - Prior M-mode/2-D techniques make assumptions
  - Accurate for both LV and RV measurements
  - Reproducible

- LV Mass
  - Risk stratification
  - Treatment response
  - Significance of valvular lesions
LV Volume Movie
i Slice for CAD
i Slice for CAD
Current Applications

Valvular Heart Disease

- **Mitral Valve**
  - Mitral valve prolapse
  - Mitral stenosis
  - Mitral regurgitation
    - Ischemic vs dilated
  - Endocarditis
  - Prosthetic valve function
    - Pre and post valve surgery

- **Aortic Valve**
  - Aortic regurgitation
  - Endocarditis
  - Bicuspid AV

- **Tricuspid/Pulmonary Valves**
Aortic Valve Vegetation
Aortic Valve Perforation
Example Valve Cases
Current Applications

Congenital Heart Disease

- Atrial septal defects
  - Size and shape
  - Rim tissue assessment
- A-V septal defects
- Associated congenital defects
- Complex congenital defects (pediatrics)
Atrial Septal Defect
Sinus Venous Defect
Current Applications

Cardiac Masses

- Assessment of size
- Tissue characterization
  - Smooth v irregular
  - Circular v irregular
- Attachment site
- Involvement of adjacent structures
Myxoma
Right Atrial Mass
Right Atrial Mass
Echo Therapeutics

- ASD closure device placement
  - Assess position
  - Assess success of closure
- Guidance for right ventricular biopsy
- Mitral valvuloplasty
  - Pre-assessment of balloon placement
  - Post-assessment of success
Trans-Septal Puncture
Live 3D Echo

- What 3D adds to the image
Comparison Study

Real-time 3-D Echo to Conventional 2-D

- 106 pts
- 2-D and 3-D echos

Grading Scale

- A: new findings 7 (7%)
- B: additional info 19 (18%)
- C: equivalent info 65 (61%)
- D: missed findings 15 (14%)

Comparison Study

New Findings

- Depth of anterior mitral leaflet cleft
- Shape of ventricular septal defect
- Two pacer wires in venous ventricle
- Leaflet motion in a tissue prosthesis
- Improper tricuspid leaflet coaptation
Comparison Study

Additional Useful Information

- Visualization of myxomatous mitral valve
- Morphology of atrial septal defect
- Mass in left ventricular outflow tract
- Patency of main pulmonary artery
- Stenotic baffle in Mustard case
- Intra-atrial membrane location
- Ventricular septal patch dehiscence
- Location of epicardial fat in pericardial effusion
- Aortic valvular mass
- Aortic valvular morphology
- Mitral valvular mass
- Papillary muscle orientation
- Left ventricular wall-motion abnormality
Future Applications

Transcutaneous Therapy

- Atrial ablation
  - RA flutter ablation
  - Pulmonary vein isolation
- Cardiac resynchronization therapy (CRT)
- Delivery of gene therapy
Future Applications

Ischemic evaluation

- Stress echocardiography
  - Shorter acquisition time
  - Improved test sensitivity
  - Less respiratory artifact
Future Directions

- On-line analysis
  - Preset multiple 2-D slices from one 3-D data set
  - Wall motion analysis
- Transducer improvements
  - Smaller foot plate for better acoustic window
- Improved image resolution
- Larger image window
- Incorporation into 2-D exam
3-D Limitations

▪ Image acquisition
  ▶ Larger footprint limits acoustic window
  ▶ Heavy transducer

▪ Image processing
  ▶ Still time consuming for in depth structural analysis
  ▶ Standardization needed

▪ Image analysis
  ▶ Cardiologists need more exposure
Questions?