Three Dimensional Echocardiography

Past, Present, and Future

J. Cullen Hardy, MD, FACC The Cardiovascular Group at Selma

Overview

History of echocardiography - History of 3-D echo Current utility Specific examples Future directions

History of Echocardiography

Single dimensional (M-Mode) Echo

History of Echocardiography

Two dimensional Imaging 1980's-90's

Additional Historic Advances

- Doppler velocity tracings
- Color Doppler imaging
- Transesophageal imaging (TEE)
- Intravascular ultrasound (IVUS)
- Harmonic imaging
- Contrast perfusion imaging

Limitations of 2-D Imaging

- Limited acquisition windows
- Theoretically more time consuming acquisition
- Incomplete view of a single structure
- Loss of structural orientation/spatial relationships
- Lack of volume or mass measurements
- Poor quantification of regurgitant lesions
- Inherent increased learning curve

Art History

Pre Perspective

Early

Renaissance

Post Perspective

Raphael: School of Athens--15th C.

Initial word panel of Psalm--14th C.

Prince of Egypt

Live 3D Echo Historical Perspective of Echo

History of 3-D Echocardiogaphy

Free-hand Scanning Method

- Developed in the early 80's
- Utilized multiple separate imaging planes
- Images aligned using acoustic locator system
- Acquired over several heart beats
- Reconstructed off-line with hand tracing
- Used for LV volume and mass measurements

History of 3-D Echocardiography

Gated Sequential Scanning

- Developed in the early 90's
- Utilized a single acquisition window
- Mechanically rotated the transducer
- ECG/Respiratory gated
- Acquired over several heart beats
- Reconstructed off-line

Live 3D Echo Data Acquisition

- Sequential acquisitionManual method
- ► Parallel
- ► Fan-like
- ► Free surface
- Automated method
- ► Rotational
- ► Fan-like
- ► Parallel

History of 3-D Echocardiography

Real Time (Live) 3-D

- Initial development in mid 80's
- Transducer technology
 - Sparse array: 256 elements
 - Full matrix array: 3000 elements
- Simultaneous image acquisition
 - Multiple planes simultaneously
 - Single heart beat
- Image processing on-line

Live 3D Echo Sparse Arrays

- Real-time
- Limited image quality
- Weak sensitivity
- Potentially poor resolution
 ~300 elements

Live 3D Echo X- Matrix Array

Real-time volume acquisition
Excellent image quality
~3000 elements and electrical connections

Live 3D Echo X-Matrix Technology

Sensor Fabrication

Microscopic photo of top view xMATRIX posts

Live 3D Echo Technology

xSTREAM Architecture

- Super-computed processing
- Processes multiple data streams simultaneously
- Incorporates a processing environment capable of 250 billion operations per second

3-D Echo Acquisition

Live 3D Echo Types of 3D Data Sets

Live 3D

► A real-time mode allowing immediate acquisition and visualization in 3D

•3D Zoom

• A real time mode used for specific regions of the heart

Full Volume (FV)Color Full Volume (FV)

► Fast triggered mode to acquire high resolution anatomic structures in larger volumes

 FV mode acquires high resolution color flow of hemodynamic patterns/shapes in 31

Current Applications

- Ejection fraction calculation
 - Prior M-mode/2-D techniques make assumptions
 - Accurate for both LV and RV measurements
 - Reproducible
- LV Mass
 - Risk stratification
 - Treatment response
 - Significance of valvular lesions

LV Volume Movie

i Slice for CAD

PHILIPS

i Slice for CAD

Current Applications

Valvular Heart Disease

- Mitral Valve
 - Mitral valve prolapse
 - Mitral stenosis
 - Mitral regurgitation
 - Ischemic v dilated
 - Endocarditis
 - Prosthetic valve function
 - Pre and post valve surgery

- Aortic Valve
 - Aortic regurgitation
 - Endocarditis
 - Bicuspid AV

 Tricuspid/Pulmonary Valves

Aortic Valve Vegetation

Aortic Valve Perforation

Example Valve Cases

Current Applications

Congenital Heart Disease

- Atrial septal defects
 - Size and shape
 - Rim tissue assessment
- A-V septal defects
- Associated congenital defects
- Complex congenital defects (pediatrics)

Atrial Septal Defect

PHILIPS

Sinus Venous Defect

Current Applications

Cardiac Masses

Assessment of size
Tissue characterization
Smooth v irregular
Circular v irregular
Attachment site

Involvement of adjacent structures

Myxoma

Right Atrial Mass

Right Atrial Mass

Echo Therapeutics

- ASD closure device placement
 - Assess position
 - Assess success of closure
- Guidance for right ventricular biopsy
- Mitral valvuloplasty
 - Pre-assessment of balloon placement
 - Post-assessment of success

Trans-Septal Puncture

Live 3D Echo

•What 3D adds to the image

Comparison Study

Real-time 3-D Echo to Conventional 2-D

- 106 pts
- 2-D and 3-D echos
- Grading Scale
 - A: new findings
 - ► B: additional info
 - C: equivalent info
 - D: missed findings

<u>#Cases</u> 7 (7%) 19 (18%) 65 (61%) 15 (14%) Comparison Study

New Findings

Depth of anterior mitral leaflet cleft
Shape of ventricular septal defect
Two pacer wires in venous ventricle
Leaflet motion in a tissue prosthesis
Improper tricuspid leaflet coaptation

Comparison Study

Additional Useful Information

- Visualization of myxomatous mitral valve
- Morphology of atrial septal defect
- Mass in left ventricular outflow tract
- Patency of main pulmonary artery
- Stenotic baffle in Mustard case
- Intra-atrial membrane location
- Ventricular septal patch dehiscence
- Location of epicardial fat in pericardial effusion
- Aortic valvular mass
- Aortic valvular morphology
- Mitral valvular mass
- Papillary muscle orientation
- Left ventricular wall-motion abnormality

Future Applications

Transcutaneous Therapy

- Atrial ablation
 - RA flutter ablation
 - Pulmonary vein isolation
- Cardiac resynchronization therapy (CRT)
- Delivery of gene therapy

Future Applications

Ischemic evaluation

Stress echocardiography
Shorter acquisition time
Improved test sensitivity
Less respiratory artifact

Future Directions

- On-line analysis
 - Preset multiple 2-D slices from one 3-D data set
 - Wall motion analysis
- Transducer improvements
 - Smaller foot plate for better acoustic window
- Improved image resolution
- Larger image window
- Incorporation into 2-D exam

3-D Limitations

- Image acquisition
 - Larger footprint limits acoustic window
 - Heavy transducer
- Image processing
 - Still time consuming for in depth structural analysis
 - Standardization needed
- Image analysis
 - Cardiologists need more exposure

