CLINICAL VERSUS SIMULATION: OUTCOMES, THE EVIDENCE, AND THE POSSIBILITIES

Pamela R. Jeffries PhD, RN, FAAN, ANEF
Johns Hopkins University School of Nursing
Hagerstown Education Conference
June 5, 2013
Objectives: The participant will be able to:

1) Explain the current use of simulation as a clinical experience.

2) Compare the evidence relative to learning outcomes using simulation to the evidence relative to learning outcomes with use of clinical time.

3) Describe the perceived stressors and barriers to using simulations in place of clinical experiences.
Search for Evidence

• Systematic reviews
• Integrative literature reviews
• Individual studies
Search for Evidence

- Campbell Collaboration
 http://www.campbellcollaboration.org/library.php
Colloquium program book available

The program book for the 2010 Joint Colloquium of the Cochrane and Campbell Collaborations is now available for download!

All roads lead to Keystone

The Joint Colloquium of the Cochrane and Campbell Collaborations is approaching fast, but there is still time to register for what promises to be the most important event of the year for people interested in systematic reviews and evidence-based policy and practice. Join us in Keystone, Colorado 18-22 October!
Search for Evidence

The BEME Collaboration is a group of individuals or institutions who are committed to the promotion of Best Evidence Medical Education through:

- the dissemination of information which allows medical teachers, institutions and all concerned with medical education to make decisions on the basis of the best evidence available
- the production of appropriate systematic reviews of medical education which reflect the best evidence available and meet the needs of the user, and
- the creation of a culture of best evidence medical education amongst individual teachers, institutions and national bodies.

BEME is supported by:

[Amee] and [Warwick Medical School]

Tel: +44 (0)24 7615 0924. Email: BEME_collaboration
Published Reviews

BEME Guide No 4
Features and uses of high-fidelity medical simulations that lead to effective learning: a BEME systematic review
Lead reviewer: Barry Issenberg MD

BEME Guide No 5
Predictive values of assessment measurements obtained in medical schools and future performance in medical practice
Lead reviewer: Professor Hossam Hamdy

BEME Guide No 6
How can experience in clinical and community settings contribute to early medical education? A BEME systematic review
Lead reviewer: Dr Tim Dornan

BEME Guide No 7
Systematic review of the literature on assessment, feedback and physicians' clinical performance: BEME Guide No 7
Lead reviewer: Dr Jon Veloski

BEME Guide No 8
A systematic review of faculty development initiatives designed to improve teaching effectiveness in medical education
Lead reviewer: Yvonne Steinert
Use Multiple Databases

PubMed “problem-based learning” (PBL)
 systematic reviews

CINAHL PBL
 systematic review
Evaluating Studies

Levin’s 4-stage Model

Stage 1: Pilot and observational studies
Stage 2: Controlled experiments in classroom, lab, clinical setting; observational studies of master teachers over time
Stage 3: Randomized controlled trials
Stage 4: If intervention effective - use evidence in other settings
Nursing Education: Limited Evidence

- Studies lack rigor
- Small samples
- 1 setting only
- Few replications
- Few use valid and reliable tools (most investigator developed, not tested)
Clinical versus Simulations

- Schools of nursing across the country are grappling with the question of how much clinical time can be provided via simulation or other alternative experiences.

- Traditionally the discipline has assumed that experience in actual clinical settings is the "gold standard" for students learning nursing practice and, by default, that any substitution is a threat to this standard, to the quality of graduates' practice and to the safety of the public.
Clinical Reality

- A recent national survey of faculty teaching prelicensure students in clinical settings showed that barriers such as lack of quality clinical sites and lack of qualified faculty are fostering the widespread adoption of alternatives (Ironside & McNelis).

The need to manage increasingly large clinical groups encourages faculty to:

- Pair students in the care of a single patient,
- Send students off the clinical unit for observation,
- Decrease the numbers of skills students perform
- To increase the use of simulation.
Real Clinical Time

• Polifroni (1995) noted that for approximately 12% of the time, students were not engaged in care activities at all

• Students were waiting for someone or something or were occupied in non-clinical matters.

• Interactions students have with faculty and expert nurses during clinical experiences are believed to be crucial in their formation

• Little is known about the nature of these interactions and the ways in which they enhance students' nursing knowledge, skill acquisition, and management of the cognitive work of nursing.
Evidence on the Traditional Clinical Model

- 2005 Yonge and colleagues reviewed 1286 published articles reporting research in nursing education and found only 39 to be studies of clinical education.

- Without an evidence base for clinical teaching, many faculty members continue to teach as they were taught (Ironsdie, 2001) even though the context in which students learn and nurses practice has changed, and continues to change, dramatically.
Evidence on Clinical Education

- Clinical studies tend to involve a single class at a single school (often a class taught by the investigator), utilize small (less than 100) sample sizes (Yonge et al., 2005)

- Studies rely on anecdotal evidence or outcomes that may or may not relate to actual practice abilities (i.e., satisfaction).

- Evidence is frequently collected via self-report or questionnaire (Yonge et al., 2005)

- The paucity of research to guide clinical teaching has led to little change in the predominant model of clinical education over time.

- Tanner (2006a) reports that the current clinical model (one clinical faculty member assigned to a group of 8-12 students, each of whom provides care to one or two patients during the clinical experience) can be traced to the 1930s and continues to be the predominant model today.
Asking Questions

• What studies have been done to document clinical education?

Consistent findings:
• Teachers and preceptors ask low level questions (knowledge, recall) during clinical practice and in discussions
• Most questions seek yes/no response

M. Oermann (2010)
Asking Questions

• Sequence questions

Low level TO high level
Nurses not prepared for practice

• The Carnegie Foundation of Teaching, the NCSBN, and the Joint Commission of State Board of Nursing, and Joint Commission of Accreditation of Hospitals have issued reports concluding that nurses entering the workforce are not prepared for practice challenges.

• The current educational model has failed students, faculty, and patients.

• Some schools have redesigned their clinical teaching model to include simulations.
Studies on comparing clinical to simulations

• A few studies have determined that clinical simulations as a clinical time was at least as good as clinical. (Alinier, G., Hunt, Gordon, R., Harwood, C. (2006).

• Schlaret, MC & Pollock, JW (2010) – study showed simulation experience just as good as real clinical time.

• Cant and Cooper (2010) reported that only 12 quantitative studies using an experimental design with most of the studies measuring knowledge, critical thinking, satisfaction, and confidence.
Study comparing simulation experiences to traditional model of clinical

• Findings included that time spent in simulation enhanced clinical performance as students in simulation achieved higher scores more quickly than those without simulations.
Need to “bridge the gap” between education and practice

• A gap exists between the academic preparation of nursing students and the needs of the clinical agency

• There is a growing concern among the frontline hospital leaders about the new graduates

• Clinical education is not currently working using only the traditional models we have used for decades
The Nurse Executive center of the Advisory Board (2008)

- Survey taken 2008

- Of 135 nurse executives – 10% who responded to the survey stated new graduates were fully prepared for practice while 89.9% of the 362 nursing school leaders agreed

- A large preparation-practice gap exists!

The Nursing Executive Center of The Advisory Board Company (2008)
Practice-Readiness defined in 6 general areas

- Clinical knowledge
- Technical skills
- Critical Thinking
- Communication
- Professionalism
- Management of responsibilities
Clinical Simulation Evidence

• Qualitative/Quantitative synthesis of research on simulations
 • Summary of results of 3 prior evidence reviews (1969-2003)
 • Selective, critical review of research from 2003-2009
 • Meta-analysis, JAMA (2011)

Technology-Enhanced Simulation: A meta-analysis and systematic review

• From a pool of 10,903 articles, the researchers identified 609 studies for synthesis

• In comparison, with no intervention, technology-enhanced simulation training in health professions education is consistently associated with large effects for outcomes of knowledge, skills, and behaviors, and moderate effects for patient outcomes

Comments from the JAMA meta-analysis

Important questions in the area of simulations are those that:

- clarify when to use simulations
- how to use simulation most effectively and cost efficiently

Need for research in the area of theory-based comparison between different technology-based simulation designs that minimize bias, achieve appropriate power, and avoid confounding, as well as rigorous qualitative studies, are necessary to clarify how and where to effectively use technology-enhanced simulations for training healthcare professionals.
Nursing Research on the HPS

• State of the science in pre-licensure nursing education – for HPS

• 9 articles (2002- present) – focus on student perceptions, learner satisfaction/self efficacy, skill attainment, knowledge gains, knowledge transfer, and critical thinking

• Summary: Move simulation studies to the level of empirical research to determine if the HPS improves critical thinking and as a result, improves patient outcomes

• Carefully designed multi-site studies are needed
Simulation: Feedback

- Feedback (debriefing)
 - Most important across studies
 - Formative (improve performance)
 - Limited use for summative evaluation
 - High stakes testing
Simulation: Deliberate Practice

- Deliberate practice
 - Repetitive practice of well defined skill
 - Assessment of performance
 - Specific, informative feedback

- Strong association between hours of practice on high-fidelity simulators and learning outcomes
Deliberate Practice
Curriculum Features

- Highly motivated learners
- Engaged with well-defined objectives
- Approved level of difficulty
- Focused, repetitive practice
- Rigorous, precise educational measures
- Trainer monitors learning experiences
- Advance to another task, once completed

(Ericsson & Lehmann, 1996, pp. 278-279)
Goal in Deliberate Practice

Constant skill, knowledge, or professional improvement, not just status quo.

A. Ericsson 2007
Mastery Learning

Goal: All learners accomplish all educational objectives without variation

Features

1. Baseline (e.g., diagnostic testing)
2. Clear learning objectives, units ordered by difficulty
3. Educational activities (e.g., deliberate skills practice) focused on objectives
4. Minimum passing *mastery* standard (MPS) for each unit
5. Formative testing \rightarrow *mastery* of each unit
6. Advancement if performance \geq MPS
7. Continued practice or study until MPS is reached
Best Evidence Training Using Simulation

- Mastery Learning – benchmarks set
- Deliberate Practice – repetitive practice/feedback
- Curricular Integration – part of existing courses
- Adaptive Learning – small group/self learning/remediation
- Clinical Variation – 10 clinical cases

Key Features of BEME Review of Simulation

Issenberg, et al 2005
Harvey: The Cardiopulmonary Patient Simulator

Pulses

Venous & Arterial

Chest Wall

Auscultatory Findings

Cardiac

Pulmonary
Research Question: An exemplar

Can APNs perform accurate cardiovascular assessments after completing the Harvey curriculum?

Is there a significant difference in nursing skill performance and clinical diagnostic reasoning pre-post testing?
Practice is Critical

• Meta-analysis of 53 studies on skill decay

 • **Substantial** loss of acquired skills from nonuse or lack of practice

 • Skills not practiced or used for 1 year:
 • Average participant performs at less than 92% of original skill
 • Skills taught early in nursing program that are not used are not retained
Stresses of Students in Clinical Practice

• What studies have been done?

• **Fear** of making mistake that would harm patient
• Interacting with teacher, other providers, patients, staff
• Changing nature of patient conditions
• Lack of knowledge and skill
• Being unfamiliar with clinical setting
Stresses of Students in Clinical Practice

Being observed and evaluated by teacher
Differences across Clinical Nursing Courses

High stress

Pediatric nursing

Low stress

Foundations
Stressors identified by students immersed in simulations

- Close evaluation by instructor and peer
- Fear of mistakes
- Feeling very responsible for outcomes
- Fear of embarrassment
Coping mechanisms of Students in Simulations

- Use both problem-focused and emotion-focused coping mechanisms
- Problem-focused:
 - Individual preparation
 - Get familiar to room and equipment
 - Anticipate situations
 - Discuss with instructor
Coping mechanisms continued

- Emotion-focused Coping
 - Know the setting is safe to make mistakes
 - Remind self this is a learning experience
 - Solidarity from group
 - Support
 - Comfort
 - No judgment by peers
Transform nursing field to prepare nurses to lead change and advance health for all Americans
Ensure that Nurses Engage in Lifelong Learning

Faculty

- Partner with health care organizations to develop and prioritize competencies so curricula can be updated regularly to ensure that graduates at all levels are prepared to meet population’s current and future health care needs

Commission on Collegiate Nursing Education and National League for Nursing Accrediting Commission

- Require nursing students to demonstrate comprehensive clinical performance competencies that encompass knowledge and skills needed to provide care across settings and lifespan
NCSBN Survey 2010

- Survey mailed to 1720 schools of nursing
- N – 1060 responded – 62% response rate

- Program type
 - Associate – 614
 - Baccalaureate – 433
 - Diploma – 79
 - Prelicensure MSN – 42

Hayden, J. (2010). Nursing Program Simulation Use, Faculty Preparation, and Clinical Replacement: A national survey. NCSBN.
Use of High Fidelity Simulations

- Overall – 87% of schools are using

- Associate – 86%
- Baccalaureate – 89%
- Diploma – 73%
- Prelicensure MSN – 94%
The NCSBN is conducting a landmark, national, multi-site, longitudinal study of simulation use in pre-licensure nursing programs across the country.

The study will follow a cohort of students throughout their education and into the first year of their respective careers to discover the effects of simulation in learning, and how it translates into the workforce post graduation.

In the final phase of the study, translational outcomes of simulation into the workforce will be evaluated, which has, heretofore, been the "missing link" in nursing simulation research.
NCSBN Study Goals

- **Evaluate the learning** occurring with varying amounts of simulation substituting for clinical hours

- **Evaluate new graduates** ability to translate nursing knowledge and skills into the workplace

- Highlight **best practices in simulation** use
There is a need for more focused research in both areas pertaining to:

- Educational impact
- Program improvement
- Role in advancing patient safety
Limitations

• At the heart of all research in simulation-based or traditional clinical assessment rests the key issue of score validity
 • “Are we really measuring what we think we are measuring?”

• Gathering evidence to support the answer can be complex and time-consuming
 • Expansion of measurable skill domains beyond PE, Hx, communication
Summary

• As simulation-based performance assessments/evaluations become more commonplace for higher-stakes decisions (e.g. certification, licensure), evidence to support the application and defensibility of decision rules needs to be gathered

 - Theoretical basis for what is being measured?

 - Link between decisions (e.g. identifying those in need of remediation) and educational activities

 - For an evaluation to yield valid inferences, the data must be reliable
Goal for using simulations: Optimal Student Learning for High Quality Patient Care
References

References

Questions?

pjeffri2@jhu.edu