Notes for Test 2

(2.1 – 2.4, 7.1, 3.1 – 3.4)
You may NOT use these notes for the test, but they should help you study.

• Formulas to Know (2.1)
 o Distance Formula: \(d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \)
 o Midpoint Formula: \(\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \) This should be written as an ordered pair.
 o Know how to determine if points form a parallelogram

• Circles (2.2)
 o Standard Form: \((x - h)^2 + (y - k)^2 = r^2 \)
 Remember that when you pull the center \((h, k)\) out of standard form, you have to change the signs!!!
 o General Form: \(x^2 + y^2 + ax + by + c = 0 \)
 o You need to be able to get from General Form to Standard Form (completing the square process)
 o Intercepts:
 ▪ \(x \)-intercept: set \(y = 0 \)
 ▪ \(y \)-intercept: set \(x = 0 \)

• Equations of Lines (2.3 and 2.4)
 o Special cases:
 ▪ \(y = 4 \) (or any number) is a horizontal line with slope \(m = 0 \)
 ▪ \(x = -\frac{2}{3} \) (or any number) is a vertical line with slope = undefined
 o If directions say “Find an equation of a line,” you must start by using the point-slope formula: \(y - y_1 = m(x - x_1) \)
 o To find a slope given two points \(m = \frac{y_2 - y_1}{x_2 - x_1} \)
 o Forms of lines - Pay attention to the directions. Be sure to use the correct form!
 ▪ Point-slope Form: \(y - y_1 = m(x - x_1) \)
 ▪ Slope Intercept Form: \(y = mx + b \)
 ▪ Standard Form: \(Ax + By = C \) (A must be a positive number)
 o Parallel lines have the EXACT same slope
 o Perpendicular lines have slopes that are opposite in sign and are reciprocals of each other
 o Intercepts:
 ▪ \(x \)-intercept: set \(y = 0 \)
 ▪ \(y \)-intercept: set \(x = 0 \)
 o You must be able to graph a line

• Systems of Equations (7.1)
 o 2-by-2 systems, use the elimination method
 o 2-by-2 systems, use the substitution method
 o Know how to set up a 2-by-2 system from a word problem
Notes for Test 2

(2.1 – 2.4, 7.1, 3.1 – 3.4)

You may NOT use these notes for the test, but they should help you study.

- **Functions (3.1 and 3.2)**
 - Know the difference between a polynomial, rational, and root functions
 - Finding the domain (without a graph)
 - Denominator of a fraction cannot equal 0 (≠ 0)
 - Even roots must be positive (≥ 0)
 - If there is an even root in the denominator, the root must be positive and cannot be 0 (>0)
 - Be sure to express in interval notation
 - Finding the domain and range (with a graph)
 - Domain is the set of \(x \)-values (how far left and right the graph goes)
 - Range is the set of \(y \)-values (how far down and up the graph goes)
 - Be sure to express in interval notation
 - Intervals of increasing, decreasing, and constant
 - Use only the \(x \)-values of the starting and stopping point
 - ALWAYS use parenthesis when writing the interval notation
 - Be able to determine if a function is even, odd, or neither
 - Even (with a graph) folds perfectly on the \(y \)-axis
 - Even (without a graph) set \(x = -x \) and simplify. If you get the original equation back, then it is even.
 - Odd (with a graph) rotate upside down and it is still the same as the original
 - Odd (without a graph) set \(x = -x \) and \(y = -y \) and simplify. If you get the original equation back, then it is odd.
 - If none of the above situations are true, the graph is neither even nor odd.

- **Transformations (3.3 and 3.4)**
 - Horizontal Shifts (number is inside parenthesis – shift opposite direction of the sign)
 - Shift Left \(y = (x + 3)^2 \) number is positive
 - Shift Right \(y = (x - 3)^2 \) number is negative
 - Vertical Shift (number is outside parenthesis – shift same direction of the sign)
 - Shift Up \(y = x^2 + 3 \) number is positive
 - Shift Down \(y = x^2 - 3 \) number is negative
 - Horizontal Stretches/Compressions (number is inside parenthesis)
 - Stretch \(y = \left(\frac{1}{5}x \right)^2 \) number is smaller than 1 (wider)
 - Compression \(y = (5x)^2 \) number is larger than 1 (skinnier)
 - Vertical Stretches/Compressions (number is outside parenthesis)
 - Stretch \(y = 5x^2 \) number is larger than 1 (skinnier, but taller)
 - Compression \(y = \frac{1}{5}x^2 \) number is smaller than 1 (wider, but shorter)
 - Reflections
 - About \(x \)-axis – multiply everything by -1
 - About \(y \)-axis – change \(x \) to a \(-x\)