Notes for Test 3

(3.5 - 3.6, 4.1 – 4.7)
You may NOT use these notes for the test, but they should help you study.

- **Functions (3.5)**
 - Know how to find the domain of a function (type in interval notation)
 - Denominator of a fraction cannot equal 0 ($\neq 0$)
 - Square roots must be positive (≥ 0)
 - If there is a square root in the denominator, the square root must be positive and cannot be 0 (> 0)
 - Know how to Add/Subtract/Multiply/Divide two functions and find the domain
 - Know how to find composite functions and their domain - $f \circ g$, $g \circ f$, $f \circ f$, $g \circ g$

- **Inverses (3.6)**
 - Be able to determine if a function is one-to-one
 - Be able to find the inverse of a function (switch x and y and re-solve for y)
 - Be able to graph a function and its inverse (symmetrical to $y = x$)
 - Be able to find the domain and range of a function and its inverse
 - Domain of $f(x)$ $x \neq$
 - Range of $f(x)$ $y \neq$
 - Domain of $f^{-1}(x)$ $x \neq$
 - Range of $f^{-1}(x)$ $y \neq$

- **Quadratic Functions (4.1 and 4.2)**
 - Know the forms of quadratic function
 - General Form: $f(x) = ax^2 + bx + c$
 - Standard Form: $f(x) = a(x - h)^2 + k$ where (h,k) is the vertex
 - Be able to go from standard to general (Don’t forget to FOIL!!)
 - Find the vertex $\left(\frac{-b}{2a}, f\left(\frac{-b}{2a} \right) \right)$ and graph
 - Determine if a graph opens up/down, vertex, axis of symmetry, intercepts, graph, domain, and range (similar to 1.4.SbS-21)
 - Know how to find maximum and minimum values given the function

- **Polynomial Functions (4.3)**
 - Find x and y intercepts
 - Find the real zeros of a factored polynomial
 - Determine a zero’s multiplicity
 - Determine if the graph will touch or cross at a particular zero
 - Even multiplicity: Touch
 - Odd multiplicity: Cross
 - Determine the end behavior of a graph
 - $f(x) = x^{even}$ both ends of graph opens up
 - $f(x) = -x^{even}$ both ends of graph opens down
 - $f(x) = x^{odd}$ left end of graph is down and right end is up
 - $f(x) = -x^{odd}$ left end of graph is up and right end is down
Notes for Test 3

(3.5 - 3.6, 4.1 – 4.7)

You may NOT use these notes for the test, but they should help you study.

- **Synthetic Division (4.4)**
 - Be able to synthetically divide with \((x - c)\)
 - Write in form \(f(x) = (x - c) \times q(x) + r\)
 - Use synthetic division with complex numbers
 - Identify remaining zeros (real and complex)
 - Write in factored form
 - Identify graph based upon zeros and multiplicities

- **Zeros of Polynomial Functions (4.5)**
 - Find potential zeros \(\pm factors \text{ of } p(\text{constant at end})\) \(\pm factors \text{ of } q(\text{leading coefficient})\)
 - Be able to use the Intermediate Value Theorem
 - Form a polynomial given the zeros
 - Find all zeros (real and complex)

- **Rational Functions and Graphs (4.6)**
 - Be able to find the domain and the \(x\)- and \(y\)- intercepts
 - Find asymptotes (ALWAYS factor and simplify before solving for asymptotes!!)
 - **Vertical Asymptote:** Set denominator equal to 0 and solve for \(x\).
 - **Horizontal Asymptote:**
 1. If the degree of the denominator is **greater than** the degree of the numerator, the HA is \(y = 0\)
 2. If the degree of the denominator is **equal to** the degree of the numerator, the HA is \(y = \frac{\text{coefficient of the numerator}}{\text{coefficient of the denominator}}\)
 - **Slant Asymptote:** If the degree of the denominator is **exactly one less than** the degree of numerator, then divide the polynomials and ignore the remainder. The line should be expressed in \(y = mx + b\).
 - There will be no Horizontal or Slant Asymptotes if the degree of the denominator is more than one less than the degree of the numerator.
 - Removable Discontinuities
 - Find the domain of \(f(x)\)
 - Factor and simplify \(f(x)\) completely
 - Plug the \(x\)-values excluded in the domain into the simplified version of the \(f(x)\), this will result in a \(y\)-value
 - Write removable discontinuities as an ordered pair \((x, y)\)
 - This point will be represented by a hole on the graph
 - Be able to complete the nine-step graphing strategy (similar to 4.6SbS-43)

- **Variation (4.7)**
 - Direct: \(y = kx\) (multiply)
 - Inverse: \(y = \frac{k}{x}\) (divide)
 - Joint: \(y = kxz\) (multiply)