

Pediatric Echocardiography

Sarah Clauss MD

Children's National Medical Center Washington DC

What is your career?

- A. Adult Echocardiographic Sonographer
- B. Pediatric Echocardiography Sonographer
- C. Adult and Pediatric
- D. Radiology
- E. Other

Overview of Embryology

Understand Pediatric Echocardiography

Congenital Heart Disease

- Common lesions
- Complex lesions

Congenital Heart Defects 7-10/1,000 Live Births

DIAGNOSIS (Balt-Wash)	PERCENT
Ventricular septal defect	26%
Tetralogy of Fallot	9%
Atrioventricular septal defect	9%
Atrial septal defect	8%
Pulmonary valve stenosis	7%
Coarctation of the Aorta	7%
Hypoplastic left heart syndrome	6%
D-Transposition	5%
	Children's Nation

CHD in Adults

30,000 babies born with CHD per year 20,000 surgeries for CHD per year 85% survive into adulthood Over 1.2 million adults with CHD Increasing at 5% per year 8,500 per year reach adulthood Less than 10% disabled

Diagnosis	1950's	1960's	1970's	1980's	1990's	2000's
ASD	Rare Repair	Repair older child	Repair age 4	Repair age 2	Repair age 2-3	Device closure
VSD	Rare Repair	Repair >10 kg or palliate	Repair < 1 year or palliate	Repair 6 months or prn	Repair premature infants	
PDA	Repair	Repair	Repair	Repair	Repair	
TOF	Palliate	Late Repair in adults	Repair after palliation		Repair 2-8 months or prn	
TGA	No survivors	Rare Survivors	Atrial Repair	Transitional Decade	Arterial Repair	
Single	Comfort	Palliate	Rare	Fenestrated	Lateral	Extra-
Ventricle	care		Fontan	Fontan	Tunnel	cardiac Fontan
HLHS	Comfort care	Comfort care	Surgery in Boston	Comfort vs. high risk surgery	Surgery & Fetal Diagnosis	

Embryology 101

19 Days: Two endocardial tubes have formed – these tubes will fuse to form a common, single primiative heart tube

- 22 Days: Heart tube begins to beat
- 23 Days: Folding commences
- 30 Days: Primitive circulation
- 9 weeks (56 Days): All major structures identified

(In humans, several months of gestation remain for emergence of HLHS, PS, etc)

The Cardiac Crescent and the Tube Heart

Looping and Septation

From Heart Developmentel999tional

How do Congenital Heart Defects form?

Complex interaction between environmental and genetic etiology

- Multifactorial
- 5-8% chance of recurrence

Environmental exposures may influence micro-uterine environment and either turn on or off needed protein development

Echo timeline

1793 Italian priest studied bats 1845 Austrian scientist Christian Doppler WWII Sonar detected submarines 1954 Hertz & Edler

• (A&B mode echocardiogram)

M-mode ultrasound early 1970's

2D echo late 1970's

Doppler Echo 1980's

- Pulsed wave Doppler
- Continuous wave Doppler
- Color Doppler

Pediatric Echo is Different

Anatomy and physiology over function

Segmental approach for complex patients Improved resolution

- Heart is closer to chest wall
- Higher frequency transducers
- TEE rarely necessary for diagnosis

Inversion of apical and subcostal images

Echo in CHD

Doppler echo

- Pulsed wave Doppler
 - Quantitation of intracardiac hemodynamics (Modified Bernoulli Equation $\Delta P = 4 \times v_2^2$)
 - Valvar regurgitation
 - Intracardiac shunts
 - -LVOT/RVOT obstruction
 - Ventricular function
 - Systolic
 - Diastolic (mitral inflow, pulmonary venous inflow)

Echo in CHD

Continuous wave Doppler

- Non-invasive measurements of mean and peak transvalvar gradients
 - Valvar stenosis
- Prediction of Ventricular Pressure (modified Bernoulli equation)
 - VSD- \rightarrow LV: RV pressure gradient
 - TR/PR \rightarrow RV, PA pressure

Doppler Spectral Display

Pulsed Wave (PW)

Aortic Valve Velocity

Continuous Wave (CW)

RV pressure by TR estimation

The pressure in the right ventricle is 55+ 10= 65mmHg. The pressure in the LV is 83 mmHg; we know it from the blood pressure which was 83/61. So, it the RV systemic pressure is 34 of the systemic LV pressure. It means RV systemic pressure is elevated. It should normally be 1/3systemic.

Echo in CHD

Color Doppler

- Direction of cardiac flow
 - TAPVR vs. LSVC
- Velocity and Turbulence of cardiac flow
 - Conduit obstruction
 - Identification of intracardiac shunts
 - VSD, PDA, ASD
 - Assessment of Post-op CHD
 - Shunt patency, residual intracardiac shunt

Questions....

- How much time should you spend trying to obtain Doppler of TR when there is a HUGE ventricular septal defect?
- 2. What if your patient has a single ventricle, if you measure the TR what does that estimate?
- 3. Why is it important to Doppler a VSD?
- 4. If you see funny blood flow, should you invert your color scale?
- 5. The doctor wants to know if there is pulmonary hypertension in a NICU baby, but there is no TR, is there another way to answer that question?

Guidelines and Standards for Performance of a Pediatric Echocardiogram: A Report from the Task Force of the Pediatric Council of the American Society of Echocardiography

Wyman W. Lai, MD, MPH, FASE, Tal Geva, MD, FASE, Girish S. Shirali, MD, Peter C. Frommelt, MD, Richard A. Humes, MD, FASE, Michael M. Brook, MD, Ricardo H. Pignatelli, MD, and Jack Rychik, MD, Writing Committee, New York, New York; Boston, Massachusetts; Charleston, South Carolina; Milwaukee, Wisconsin; Detroit, Michigan; San Francisco, California; Houston, Texas; and Philadelphia, Pennsylvania

Table 4 Structures viewed from standard examination views

Subxiphoid (subcostal) views	Left parasternal views
Inferior vena cava	Inferior vena cava
Hepatic veins	Superior vena cava
Abdominal aorta	Left atrium
Diaphragm	Right atrium
Superior vena cava	Atrial septum
Left atrium	Coronary sinus
Right atrium	Pulmonary veins
Atrial septam	Mitral valve
Coronary sinus	Tricuspid valve
Pulmonary veins	Left ventricle
Mitral valve	Right ventricle
Tricospid valve	Ventricular septam
Left ventricle	Left ventricular papillary muscles
Right ventricle	Aortic valve
Ventricular septum	Pulmonary valve
Left ventricular papillary	Ascending aorta
muscles	Coronary arteries
Aortic valve	Main and branch pulmonary
Pulmonary valve	arteries
Ascending aorta	Pericardium
Coronary arteries	
Main and branch pulmonary	Suprasternal notch views
arteries	Superior vena cava
Pericardium	Left atrium
	Pulmonary veins
Apical views	Ascending aorta
Inferior vena cava	Superior thoracic aorta
Left atrium	Main and branch pulmonary
Right atrium	arteries
Atrial septam	Aortic arch
Coronary sinus	Proximal brachiocephalic arteries
Selected pulmonary veins	Left innominate vein
Mitral valve	
Tricospid valve	Right parasternal views
Left ventricle	Inferior vena cava
Right ventricle	Superior vena cava
Ventricular septum	Right atrium
Left ventricular papillary	Atrial septum
muscles	Right pulmonary veins
Aortic valve	Ascending aorta
Pulmonary valve	Right pulmonary artery
Ascending aorta	
Main and branch pulmonary	
arteries	

Classification and Terminology of Cardiovascular Anomalies

Morphologic/Segmental approach

Define morphologic—not spatial—anatomy

- Which atrium is the Right? Left?
- Which ventricle is the Right? Left?
- Which great artery is which?

Define segmental anatomy

- Segments: Atrium, Ventricles, Great Arteries
- What is the position of each segment relative to each other?
 - Is the RA on the right? Is it connected to the RV? Is it connected to the PA?
 - Is the LA on the left? Is it connected to the LV? Is it connected to the Aorta?

Predict the physiology

- What is the physiology predicted by the segmental connections?
 - Normal? Transposition? Obstructed flow?
- What is the physiology predicted by flow in the ductus? Across the foramen?

Cardiac base-apex axis and orientation in the chest

Levocardia

Mesocardia

Dextrocardia

Cardiac situs (sidedness)

Example: Cardiac sidedness

Situs solitus normal cardiac sidedenss

Situs ambiguus, right isomerism

Differentiation between the atria

The morphologic RA has a smooth or sinusal portion, which is found between the interatrial septum and the crista terminalis. It receives the drainage of the superior and inferior venae cavae and the coronary sinus. The trabecular portion is characterized by the presence of pectinate muscles, which are directed from crista terminalis to the base of the right atrial appendage. The RA appendage is wide and its edge is blunt.

RA appendage is broad based and triangularly shaped (like Snoopy's nose), with pectinate muscles that extend into the body of the right atrium.

The anatomic LA is totally smooth and lacks pectinate muscles. It receives the drainage of the pulmonary veins, and LA appendage has a narrow base and fingerlike appearance (like Snoopy's ears) with pectinate muscles confined within the appendage.

Children's National

RA and TV valve characteristics

Right atrium:

- •Limbus of fossa ovalis (limb of oval fossa)
- •Large pyramidal appendage (Snoopy's nose)
- •Crista terminalis (terminal crest)
- Pectinate muscles
- Receives venae cavae and coronary sinus*

Tricuspid valve:

- •Low septal annular attachment
- •Septal cordal attachments
- •Triangular orifice (midleaflet level)
- •Three leaflets and commissures
- •Three papillary muscles
- •Empties into right ventricle

LA and MV valve characteristics

Left atrium:

- •Ostium secundum
- •Small fingerlike appendage (Snoopy's ear)
- •No crista terminalis
- •No pectinate muscles
- •Receives pulmonary veins*

Mitral valve:

- •High septal annular attachment
- •No septal cordal attachments
- •Elliptical orifice (midleaflet level)
- •Two leaflets and commissures
- •Two large papillary muscles
- •Empties into left ventricle

Differentiation between the atria

The only structures that are constant and allow differentiation between the right and left atria are the appendages!

The drainage of the systemic and pulmonary veins does not permit the conclusive identification of the atria, as drainage sites are sometimes anomalous. The atrial septum cannot always be used either, because it can have defects or be absent.

Ventricles-characteristics

Right ventricle:

Tricuspid-pulmonary discontinuity Muscular outflow tract Septal and parietal bands Large apical trabeculations Coarse septal surface Crescentic in cross sections* (* variable) Thin free wall (3–5 mm)* **Receives tricuspid valve** Pulmonary valve empties into main pulmonary artery

Ventricles-characteristics

Left ventricle:

- •Mitral-aortic continuity
- Muscular-valvular outflow tract
- •No septal or parietal band
- •Small apical trabeculations
- •Smooth upper septal surface
- •Circular in cross section* (* variable)
- •Thick free wall (12—15 mm)*
- •Receives mitral valve
- •Aortic valve
- •Empties into ascending aorta

Ventricular features (summary)

•Features of the morphologic RV:

•Coarse trabeculae with prominent septal band, parietal band, and moderator band.

•Septophillic attachments of the tricuspid valve (attachments to septum and free wall)

•Well-developed infundibulum (= conus= cone of muscle beneath the semilunar valve) which results in fibrous dyscontinuity between the tricuspid and semilunar valves

•Features of the morphologic LV:

•Smooth septal surface, fine trabeculae

•Septophobic attachments of the mitral valve (attachments only to free wall)

•No infundibulum which results in fibrous continuity of the mitral and semilunar valves

Atrioventricular connections

Examples of atrioventricular connections: A. Concordance B. Discordance C. Double-inlet LV D. Ticuspid atresia: absent right A-V connection

Overriding and straddling

Ventriculoarterial connection- 5 possible

To summarize......The Cardiac Segments

Viscera and atria

- Abdominal situs
- Systemic and pulmonary venous return
- Atrial anatomy

Atrioventricular canal

• AV valves and atrioventricular septum

Ventricles

- Ventricular anatomy (D- or L-looping)
- · Ventricular size and proportion
- Ventricular septum

Conus

• Ventricular outflow tracts

Great arteries

- Semilunar valves
- Great arteries

Common Lesions

ASD

RV Dilation

Diastolic Septal Flattening

Atrial Septal Defects

Secundum ASD

Primum ASD

Sinus Venosus defect

 Not truly a deficiency of the atrial septum, but the same physiology as an ASD

Common atrium

Atrial Septal Development

http://www.med.unc.edu/embryo_images/unit-welcome/welcome_htms/contents.htm

Children's National

Part of spectrum of AV canal defects

Defect is contiguous with AV valves

Associated with cleft mitral valve

Sinus Venosus Defects

Deficiency in the wall between the right pulmonary veins and the RA

PAPV-DRAINAGE

- SVC type = RUPV
- Inferior type = RLPV

Sinus Venosus ASD

ASD: Clinical Correlation

Usually diagnosed in childhood

Asymptomatic

F>M

Systolic ejection murmur and widely split fixed S2 EKG may show RBBB or RVH

Devices for ASD Closure

Cardio-SEAL

Amplatzer

Amplatzer Occlusion of Atrial Septal Defect

Clockwise from above: Transcatheter delivery of Amplatzer device, which is positioned across the atrial septal defect

Left: Amplatzer device in place

Newborn infant noted to be breathing heavy in New born nursery

Chest xray demonstrates increased lung markings.

Total Anomalous Pulmonary Venous Return (TAPVR)

I: Supracardiac: common pulmonary vein drains into the right superior vena cava from the left superior vena cava (vertical vein) and the left innominate vein (50%)

II: Cardiac: coronary sinus, right atrium (20%)

III: Infracardiac: subdiaphragmatic (portal vein, inferior vena cava, ductus venosus) (20%)

IV: Mixed: any combination of types I, II, III, the least common

Partial Anomalous Pulmonary Venous Return (PAPVR) Right veins (more common): RA SVC (RUPV to the RA or base of the SVC-sinus venosus ASD) IVC Left veins: Innominate vein Coronary sinus Rarely: SVC, IVC, right atrium, or left subclavian vein

"Very loud murmur" heard prior to hospital discharge Baby is well, feeding, growing, pink, passed new pulse ox screening

The Ventricular Septum

AV canal septum (1)

Muscular septum including the trabecular portion (2) and the septal band (3) $\int \sqrt{V}$

Conal septum (4)

Conoventricular

Membranous

Inlet

Malalignment

The Ventricular Septum

Left ventricular view AV canal septum (1) Muscular septum including th and the septal band (3) Conal septum (4)

VSD: Clinical Correlation

Size and pulmonary vascular resistance determines clinical presentation

Fetal transition

Symptoms are determined by the size of the shunt

- Size of defect
- Presence of other anomalies
- Extracardiac abnormalities

Small Ventricular Septal Defects

VSD: Clinical Correlation

Spontaneous resolution

Or not...

Pulmonary disease

• Eisenmenger's syndrome

Aortic regurgitation

Continuous wave Doppler in ventricular septal defect The echocardiographic frame demonstrated the Doppler determination of pressure gradient across a membranous ventricular septal defect (VSD) (white arrow). The direction of the continuous wave Doppler beam used to obtain the velocity across the ventricular septal defect is illustrated by the red arrow. The velocity (V) is 4.5 m/sec and based upon the modified Bernoulli equation, (pressure = [velocity] 2 x 4) the gradient is 81 mmHg. (Courtesy of Idren's National -Ann Kavanaugh-McHugh, MD.)

Restrictive Membranous VSD

Children's National
Unrestrictive Membranous VSD

Atrioventricular Canal Defect- Complete

Common AV Canal (CAVC)

Endocardial Cushion Defect (ECD) Atrioventricular Septal Defect (AVSD)

Failure of the AV canal to develop properly and form tricuspid, mitral valves and portions of atrial and ventricular septae

Definitions Spectrum of defects

- Incomplete CAVC = lack the VSD component or ASD component
- Partial CAVC = synonym for incomplete CAVC <u>OR</u> = primum ASD with cleft mitral valve
- Transitional CAVC = small VSD component
- Balanced/Unbalanced

Atrioventricular Canal Defect – Partial

AV Septal Defect Complete

You are doing the echo on a baby and diagnosis her with an Unbalanced AVC.

You are having a hard time imaging the aortic arch.

Are you concerned, or do you think to yourself, the arch is always hard to image, these babies have no necks, they can't stand when I put my transducer there....I am sure its fine, I just can't see it right now.....

You are called to NICU to echo 28 week premature baby, weight is 600 gm, every time you try to image the baby's HR falls and alarms go off...

Patent Ductus Arteriosus

Patent Ductus Arteriosus

PDA: Clinical Correlation

Closed in 90% of infants by 48 hours of life

• Prematuring, altitude

Anatomy

• Derived from the left 6th embryonic arch

Closure

• Muscular constriction \rightarrow endothelium \rightarrow thrombosis \rightarrow fibrous strand Physiology \leftrightarrow shunting

Symptoms proportional to shunting

Murmur

EKG

• Ventricular hypertrophy

Patent Ductus Arteriosus

Doppler of the PDA (L-R shunt)

Color flow Doppler (left) showing a L-R shunt from the descending aorta through the PDA to the PA (red: towards the probe)

CW Doppler tracing (right) seen above the baseline indicating flow toward the probe from the descending aorta through the PDA to the PA. The peak velocity is reached in late systole 4 m/s. L-R shunt

Doppler of the PDA (bidirectional shunt)

Bidirectional blood flow through the PDA can be a normal finding in newborn infants due to high pulmonary resistance CW Doppler from an infant with pulmonary artery hypertension and PDA. The negative deflection in systole below the baseline arises from the R-L shunt through the PDA from the PA to the Dao (away from the TDX). The positive deflection (late systole-into late diastole) arises from L-R shunt through the PDA from the Dao to the PA

Doppler of the PDA (R-L shunt)

Patent Ductus Arteriosus –

Ligation and Division

Patent Ductus Arteriosus

Occlusion of Intracardiac and Vascular Shunts Coil embolization of PDA

Left, top: Catheter crosses the PDA from the aortic side and delivers a coil.

Left, bottom: Withdrawal of catheter, leaving coil in PDA

Amplatzer Ductal Occluders

Amplatzer ductal occluder

Illustration courtesy AGA Medical Group

Aorta angiogram with device occlusion of PDA, lateral view

Right Heart Obstructive Lesions

Pulmonary Valve Stenosis

Valve anatomy

- Doming, fused commissures
- Thickened, immobile
- Subvalvar obstruction
- Supravalvar obstruction

Post stenotic dilation

RVH

PS: Clinical Correlation

Asymptomatic

Murmur at birth

EKG

• RAD, RVH proportional to obstruction

Management

Balloon dilation

Excellent outcome

Pulmonary Artery Branch Stenosis

This adorable baby was just adopted from Russia. She has a history of a heart condition....

Tetralogy of Fallot : "Maladie Bleu" 1888

TOF: Clinical Correlation

Most common cyanotic defect

Defective neural crest migration resulting in abnormal conotruncal development

Clinical presentation depends on degree of subpulmonary narrowing

• This may change over time

Presentation

- Fetal dx
- Murmur

Variations in TOF

- "Mexican Tet"
 - Hypoplastic or absent conal septum
- Tetralogy with absent pulmonary valve
 - Rudimentary pulmonary valve leaflets result in fetal pulmonary regurgitation, PA dilation
 - Airway and lung development is compromised in severe cases
- Tetralogy with CAVC
- Tetrology with pulmonary atresia

TOF: Clinical Correlation

- Cyanosis due to right to left shunting at ventricular level
- Degree of cyanosis is proportional to amount of right ventricular outflow tract obstruction
- Dynamic factors may worsen cyanosis
 - Tet Spell \rightarrow no murmur \rightarrow deeply cyanotic
- EKG
 - RVH, RAD, RAE
- CXR
 - Boot shaped heart

Tetralogy of Fallot

Transcatheter Pulmonary Valve- 2010

- Catheter delivered prosthetic pulmonary valve
- Made from bovine jugular vein
- Sewn within a platinum-iridium ballon expandable stent
- For use in patients with a surgically placed conduit from the RV to the PA
- Used to treat significant conduit valve insufficiency and/or stenosis that would otherwise require surgical conduit replacement

Double Outlet Right Ventricle (DORV)

- Describes a relationship where the PA and Aorta both arise from the anatomic RV
- "DORV" is normal during heart development
- Incidence 1 1.5% of patients with CHD
- 1 per 10,000 live births
- Possible association with trisomy 13 and trisomy 18
- Van Praagh both great arteries arise from the morphologically RV
- NO mitral aortic fibrous continuity
- Two functional ventricles in which a VSD provides the only outlet for one ventricle
- Anderson 50% override rule "if >50% of the aorta is over the RV, its DORV"

Left Heart Obstruction

Aortic Stenosis

Valve, sub-valvar or supravalvar Clinical manifestations

- Mild-moderate assymptomatic
- Severe
 - Depends on age of patient
- Management
 - Cath vs. surgery

You are called to the emergency room to perform an echo on a baby that is listless and pale.

He has not been eating well over the last 24 hours

The ER doctor wants to know if they need to call cardiology....

You decide to start with parasternal imaging, you notice the LV function is very very bad....where should you image next?

Coarctation of the Aorta

Coarctation of the Aorta

Aberrant ductal tissue within the wall of the aorta

All coarcts are "juxtaductal"

Must look for other left heart ^a Disease (aortic & mitral valve)

The next day you are staffing a Children's clinic and the nurse tells you the blood pressure in the legs of the next patient are the same as the arms.

The doctor is busy and asks that you perform an echo while she finishes the previous patient...

Descending AO Doppler

Doppler "drag"

Interrupted Aortic Arch

- -Type A = After the subclavian artery, probably an extreme form of coarctation with obliteration of the lume
- -Type B = Between the LCC and LSCA, most common, defect of arch remodeling/neural crest
- -Type C = Between the Carotid arteries,

most rare

Complex Lesions

The nurse from the nursery calls you frantic, there is a baby that is blue.

He was born earlier today, he seemed ok, his birth weight was 8 pounds, uncomplicated pregnancy and delivery...

D-Transposition of the Great Arteries

D-TGA

First described by Baillie 1797 Natural history: >90% mortality in infancy Incidence: ~5% of congenital heart disease Rare association with syndromes or other anomalies Male:Female = 2:1

Possible association with infant of diabetic mother

D-TGA

Ventriculo-arterial discordan Circulation in parallel RA=>RV=>Ao LA=>LV=>PA

Must have mixing at atrial or survive

D-Transposition Balloon Septostomy

Arterial Switch Procedure

Long Term Postoperative Concerns Arterial Switch Operation

Neo-pulmonary stenosis

Coronary abnormalities

- Obstruction and stenosis
- Decreased flow reserve

Neo-aortic insufficiency

• Almost always trivial/mild

LV function

Mustard Repair

Atrial Baffle Repair Long Term Sequelae

On going late mortality risk

• 20% mortality at 20 years

Arrhythmia

SVC obstruction -- 14-17%

IVC obstruction -- 1%

Baffle Leak -- Significant 1-2%

Systemic AV valve regurgitation -- 30%

Systemic Ventricular Failure -- 15-20%

Transposition of the Great Arteries – L Type

- Congenitally Corrected Transposition"
- Atrio-ventricular and ventriculo-arterial discordance ("double discordance")
- $\mathsf{RA} \Longrightarrow \mathsf{LV} \Longrightarrow \mathsf{PA}$
- $LA \Rightarrow RV \Rightarrow Ao$

May be an isolated, asymptomatic finding or may be associated with other heart malformations

Truncus Arteriosus

TOF

A single vessel arising from the heart and giving rise to the coronary, pulmonary and systemic circulations The VSD is the same as

Aorta

Truncus Arteriosus

s National ...

AP Window

Communication between aorta and PA

Hypoplastic Left Heart Syndrome

Hypoplastic Left Heart Syndrome

BT Shunt: History

Norwood I: Anatomy

- 1. Atrial septectomy
- Ligation of main pulmonary artery and construction of neoaorta
- Sano Modification/ Modified BT Shunt

BT Shunt

Norwood I: Sano

Sano modification

- RV-to-PA conduit
- Eliminates competitive flow to PAs in diastole
- Enhances coronary perfusion

Sano Shunt

Bidirectional Glenn: Anatomy

- End-to-side anastomosis of SVC to undivided right pulmonary artery
- Includes takedown of BT shunt
- Allows flow to both lungs from SVC via passive flow

Glenn Shunt

Glenn Doppler

Fontan: Variations

Lateral tunnel runs within RA, using free wall plus conduit as baffle for IVC blood

- Fenestrations: R-to-L shunting through the fenestration → hypoxemia
- Improve cardiac output, minimize systemic venous hypertension, decrease post-op thoracostomy drainage
- Can later be closed by cath

Extracardiac is IVC to MPA

 Generally has lower rate of complications

Fenestrated Fontan

Hypoplastic Left Heart Syndrome Palliative Reconstruction

- Stage I -- Norwood Procedure
 - Birth

Stage II -- Bi-directional Cavopulmonary Shunt

- 4-6 months
- Stage III-- Fontan Procedure
 - 18-24 months for lateral tunnel procedure
 - > 15 kg for extracardiac procedure

DILBERT© Scott Adams; reprinted by permission of United Feature Syndicate, Inc.

QUESTION 1

A tachypneic 2 month old is not growing well and has a murmur. An echocardiogram is obtained:

QUESTION 1 (CONT)

All of the following statements are likely to be true except:

A. The patient is at increased risk to have Down Syndrome

- B. The patient may not need surgery
- C. The patient has an endocardial cushion defect
- D. The patient has a normal oxygen saturation

E. The patient may have a small mitral valve cleft after surgical repair

OUESTION 2 A cyanotic newborn has the following echocardiogram:

QUESTION 2 (CONT)

All of the following statements are likely to be true except:

- A. The pulmonary artery gives rise to the coronary arteries.
- B. The right ventricle pumps blood to the body
- C. Oxygenated blood is pumped to the lungs
- D. The left ventricle pumps blood to the body
- E. The right ventricular pressure is greater than or equal to the left ventricular pressure

OUESTION 3 A 40 year old with atrial fibrillation has the following echo:

QUESTION 3 (CONT) Subsequent imaging is most likely to reveal the following

- A. Tetralogy of Fallot
- B. Large membranous ventricular septal defect
- C. Large patent ductus arteriosus
- D. Large secundum atrial septal defect
- E. No structural cardiac defect

QUESTION 4 A 3 month old with a loud murmur and intermittent perioral cyanosis has the following echo:

QUESTION 4 (CONT) All of the following statements are likely to be true except:

- A. The aorta is overriding the left and right ventricle
- B. There is a large ventricular septal defect
- C. There is pulmonary stenosis
- D. The right ventricular pressure is increased
- E. The pulmonary artery pressure is increased

QUESTION 5

An asymptomatic 9 month old with a loud murmur and a BP of 79/48 and has the following parasternal long axis 2D and CW Doppler findings:

QUESTION 5 (CONT) The most likely diagnosis is:

- A. Membranous VSD, normal RV pressure
- B. Membranous VSD, elevated RV pressure
- C. Muscular VSD, normal RV pressure
- D. Muscular VSD, elevated RV pressure
- E. Tricuspid regurgitation, elevated RV pressure

Acknowledgements

Unattributed illustrations are from Nadas' Pediatric Cardiology

Amy L. Juraszek

Margaret Lasota

Children's National Medical Center

- 202-476-4880 Physician Line
- 202-476-5579 Echo Lab

