Laser Vision Correction

Sandeep K. Kakaria, M.D.
Kakaria Ophthalmology
2005 Technology Parkway, Suite 230
Mechanicsburg, PA 17050
www.drkakaria.com
History of Corneal Refractive Surgery

- Radial Keratotomy - 1974 - Svyatoslav Fyodorov - Russian Ophthalmologist
History of corneal refractive surgery

- 1987- Theo Seiler- German Ophthalmologist performed the first photorefractive keratectomy
History of corneal refractive surgery

- 1991- Ioannis Pallikaris- Greek Ophthalmologist- First laser assisted in situ keratomileusis
History of Laser Treatments

- Argon Fluoride- Argon and Fluorine gas react to make an excited dimer molecule (excimer) and radiate energy at 193 nm. Ar-F laser was invented in 1976.

- Most wide spread use is to make computer chips. Mercury Xenon was used in 1960s-1980s.

- 1981, IBM researcher Rangaswamy Srinivasan brought his Thanksgiving leftovers to the lab and irradiated turkey cartilage with the Argon-Fluoride laser. Noted precise control and no damage to adjacent tissue.

- 1983, Srinivasan worked with Stephen Trokel to demonstrate the precise effects on cows’ eyes.
History of laser treatments

- Charles Munnerlyn created the first working excimer laser for vision correction in 1985
- Created Munnerlyn’s formula
 - Ablation depth = Ablation diameter squared/3= microns per diopter ablated
 - Example- 6 mm optical zone is 12 microns ablated per diopter of treatment
 - Does not account for transition zones and astigmatism
History of laser treatments

- Types of lasers
 - Broad beam
 - Flying spot
 - Scanning Slit
AMO - VISX
Alcon- Wavelight Allegretto
History of laser treatments

- Evolution of laser treatments
 - Zone sizes
 - Transition Zones
 - Wavefront treatments
 - Aberrations
 - Correct Lower order - sphere, cylinder - up to 95% aberrations treated
 - Correct Lower and Higher order - coma, spherical aberration - up to 99% of aberrations
- Types of treatments
 - Wavefront-guided
 - Wavefront-optimized
- Topography-guided treatments
Hartmann-Shack Wavefront Sensor
Zernike Polynomials

<table>
<thead>
<tr>
<th>Common names</th>
<th>(Z_n^f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piston</td>
<td>0</td>
</tr>
<tr>
<td>Tip, Tilt (Prism)</td>
<td>1</td>
</tr>
<tr>
<td>Astigmatism, Defocus</td>
<td>2</td>
</tr>
<tr>
<td>Coma, Trefoil</td>
<td>3</td>
</tr>
<tr>
<td>Higher order</td>
<td>4</td>
</tr>
<tr>
<td>Spherical</td>
<td>5</td>
</tr>
</tbody>
</table>

\(n = \text{Radial Order} \)
History of LASIK Flaps

- Microkeratomes
 - Variable depth
 - Fixed depth
 - Hinge location
 - Nasal hinge
 - Superior hinge

- Femtosecond lasers
History of surface ablation techniques

- Photorefractive keratectomy (PRK)
- Advanced surface ablation
 - PRK with mitomycin C
 - LASEK
 - Epi-LASIK
PRK vs. LASEK
Epi-LASIK
Pre-operative assessment for laser vision correction

- Randleman’s criteria for keratoectasia risk
 - Age
 - Topography
 - Pachymetry
 - Residual stromal bed
 - Prescription
Ectasia risk factor score system

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Topography pattern</td>
<td>FFKC</td>
</tr>
<tr>
<td>RSB thickness (μm)</td>
<td><240</td>
</tr>
<tr>
<td>Age (yrs)</td>
<td>18–21</td>
</tr>
<tr>
<td>CT (μm)</td>
<td><450</td>
</tr>
<tr>
<td>MRSE (D)</td>
<td>>–14</td>
</tr>
</tbody>
</table>

Via this method, any potential refractive surgery candidate could be given a cumulative score for ectasia risk. Based on that score, patients could be assigned a risk category, and surgeons advised whether or not to proceed with refractive surgery in the following way (courtesy of Ophthalmology).

<table>
<thead>
<tr>
<th>Cumulative Risk Scale Score</th>
<th>Risk Category</th>
<th>Recommendations</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 2</td>
<td>Low risk</td>
<td>Proceed with LASIK or surface ablation</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Moderate risk</td>
<td>Proceed with caution, consider special informed consent; safety of surface ablation has not been established</td>
<td>Consider MRSE stability, degree of astigmatism, between-eye topographic asymmetry, and family history</td>
</tr>
<tr>
<td>4 or more</td>
<td>High risk</td>
<td>Do not perform LASIK; safety of surface ablation has not been established</td>
<td></td>
</tr>
</tbody>
</table>
Pre-operative assessment for laser vision correction

- Systemic diseases - Diabetes Mellitus, Autoimmune diseases.
- Ocular diseases - Keratoconus, Cataract, Uncontrolled glaucoma, Herpes Simplex Keratitis, Significant dry eye
- Medications - Accutane, Amiodarone, Imitrex
- Spectacle Prescription - Sweet Spot -8 D to +3 D, with less than 3 D of cylinder
 - Treatment Range - Approved from -14 D to +6 D, up to 6 D of cylinder
 - Stability of prescription, change in sphere or cylinder of less than 0.5 D in the past 12 months
Pre-operative assessment for laser vision correction

- Monovision option
- Dominant eye
- Pupil size
Surgical results - Custom LVC

- Myopia - 90% 20/20
- Hyperopia - 60% 20/20
Post-operative management

- LASIK
 - Flap evaluation
 - Medications- topical, oral

- PRK/ Advanced surface ablation
 - Epithelial defect
 - Haze evaluation
 - Medications- topical, oral
Post-operative management

- Dry eye
 - Regeneration of corneal nerves
- Treatments
 - Aqueous tear treatments
 - Artificial tears
 - Punctal plugs
 - Cyclosporine
 - Humidifier
 - Fan/ventilation modifications
 - Sunglasses
 - Goggles
Post-operative management

- Meibomian gland treatments
 - Warm compresses
 - Eyelid hygiene
 - Medications
 - Topical - Azasite, Tobradex
 - Oral - Doxycycline
Post-operative management

- Visual fluctuation
- Post-operative appointments