Simple Interest (Section 8.5) pg. 452

\[I = P \cdot R \cdot T \]

Compound Interest (Section 8.5) pg. 454

\[A = P \cdot (1 + \frac{r}{n})^{n \cdot t} \]

Geometric Formulas

Rectangle

Perimeter: \(P = 2l + 2w \)
Area: \(A = lw \)

Square

Perimeter: \(P = 4s \)
Area: \(A = s^2 \)

Triangle

Perimeter: \(P = a + b + c \)
Area: \(A = \frac{1}{2} bh \)

Sum of Angles of Triangle

\(A + B + C = 180^\circ \)
The sum of the measures of the three angles is \(180^\circ \).

Pythagorean Theorem

(for right triangles)

\[(a)^2 + (b)^2 = (c)^2 \]
One 90° (right) angle

Trapezoid

Perimeter: \(P = a + b + c + B \)
Area: \(A = \frac{1}{2} h (B + b) \)

Parallelogram

Perimeter: \(P = 2a + 2b \)
Area: \(A = bh \)

Circle

Circumference:
\[C = \pi d \]
\[C = 2\pi r \]
Area: \(A = \pi r^2 \)

Rectangular Solid

Volume: \(V = LWH \)
Surface Area:
\[S = 2LW + 2HL + 2HW \]

Cube

Volume: \(V = s^3 \)
Surface Area: \(S = 6s^2 \)

Right Circular Cylinder

Volume: \(V = \pi r^2 h \)
Surface Area:
\[S = 2\pi r^2 + 2\pi rh \]

Sphere

Volume: \(V = \frac{4}{3} \pi r^3 \)
Surface Area: \(S = 4\pi r^2 \)

Square-Based Pyramid

Volume: \(V = \frac{1}{3} \cdot s^2 \cdot h \)