
Course Outcomes Guide #4

Prepared by: Dave Maruszewski Page 1 2/3/2015

Course Title: SDE 130 Introduction to Object Oriented Programming

Course Leader: David Maruszewski

 Expected Learning Outcomes for Course

 Evaluate and understand the benefits and challenges associated with an object-oriented

analysis design approach to software and project development

 Identify the key concepts used in object-oriented development including inheritance,

encapsulation, data types, control flow, polymorphism and programming techniques

 Indentify design patterns in terms of participating objects and classes and the roles they

take on relative to the problem design solves

 Investigate and evaluate OOA&D (object-orientated analysis and design) tools, methods,

and models that are available and currently used in business practice

 Design an algorithmic, object-oriented solution that meets the specification of a

programming problem
 Document OOD (object-oriented design) diagrams that meet industry standards

 Adeptly model and animate in 2 dimensions and 3 dimensions

 Logically formulate scripts and/or programs to solve problems

 Understand and articulate interactivity in the gaming industry, including the connectivity

between computer art and programming

 Apply programming and artistic theory in practical applications

 Demonstrate problem solving skills through verbal and written media

 Apply rudimentary physical principles to animations or simulations

Assessment

(How do students demonstrate achievement of these outcomes?)

Students are required to complete a final project which is applied against a grade sheet. This

project was created to test skills gained throughout the course. The sections pertaining to

Flowcharts, Storyboards, “two player” and “piece” are evaluated.

Three exams are issued to help confirm the findings of the project grade. Questions pertaining to

loops, methods, events, and math application are evaluated.

Validation

(What methods are used to validate your assessment?)

Currently, all grades sheets are held for two semesters and composite data is used to show trends.

Certain chosen questions on exams should help verify or contradict findings.

Results

1. Math applications are an issue. High school math is all that is needed for this course, but

the application of that math is hard for the students to grasp.

2. Computer concepts were easily grasped when using Alice. Although, students may not

be able to articulate them well. They are understood, but not defined by the students.

3. Alice used to be used and many concepts were forged through in a short period of time.

Although, mastery was not necessarily achieved. Switching to C# has improved

understanding of coding theory. However, less material was covered.

Course Outcomes Guide #4

Prepared by: Dave Maruszewski Page 2 2/3/2015

4. Using many rules in a common animation confuses students and their programming

suffers.

5. Using outside sources has fueled students project/code work.

Follow-up

(How have you used the data to improve student learning?)

1. I have to re-teach some math in this course. I have spoken with some high school

officials at advisory boards in hopes to improve this.

2. We switched from Alice to C# and Microsoft Visual Studio.

3. This may be an effect of a first time run material. However, a more comprehensive

lesson plan may be in order to get through concepts especially involving OOP and OOD.

4. Moving to event driven programming in conjunction with OOP has helped this. Now

animation and programming can be compartmentalized if needed.

5. This is good and they even referenced well.

Budget Justification

(What resources are necessary to improve student learning?)

Microsoft Visual studio needs to be used for this course now. So, we either need it bought or

Thawspace to put the free version of it.

