Innovative treatment of mitral valve diseases: What is the role of echocardiography?

Zuyue Wang MD, FACC, FASE Director of Echocardiography Laboratory Medstar Heart and Vascular institute

Besides the surgery.....

We provide broad spectrum of innovative treatment for structural heart diseases

Surgery - · - · - · - > Percutaneous

Healthy

Older, and sicker

Evolution of Echocardiography

Single line

Single slice

Full heart beat

3D Echo is a "Must Have" for Structure Heart Disease

In the cath lab

In the OR

Mitral Regurgitation

Echo = Roadmap

How much? Severity ---3+ or 4+/4 mitral regurgitation

Jet area /LA area>40%

Central Jet

Eccentric Jet

Vena Contracta>0.7cm

Central Jet

Eccentric Jet

Severity ----3-4+ or 4+/4 mitral regurgitation

2D PISA

Primary MRERO>0.4cm2Secondary MRERO>0.2cm2

Central Jet

Eccentric jet

3D PISA

Don't forget the "simple" parameters

Mechanism of Mitral Regurgitation

Mitral Valve Anatomy

The mitral apparatus is composed of >Left atrial wall

- Annulus
- Leaflets
- Chordae tendineae
- Papillary muscles
- Left ventricular wall

Surgeon's view

Components of Mitral Valve Leaflets

Mechanism of Mitral Regurgitation

Carpentier's Classification System of MR Mechanisms

Annulus dilatation Leaflet perforation

Type II-Increased Leaflet Motion

Ruptured Chordae Elongated chordae and/or papillary muscle Ruptued PM

Type IIIa-Restricted leaflet motion (Systolic and diastolic) Type IIIb-Restricted leaflet motion (Systolic)

Commissure fusion Leaflet thickening Chordae fusion

Ventricular Dilatation Ventricular dyskinesia

Type 1 (Normal Leaflet Motion) Annulus dilatation

Type 1 (Normal Leaflet Motion) Annulus dilatation

Type 1 (Normal Leaflet Motion) Leaflet Perforation

Type II-Increased Leaflet Motion

Ruptured Chordae Elongated chordae and/or papillary muscle Ruptued PM

Spectrum of Degenerative Mitral Valve Disease

Fibroelastic Deficiency (FED)

- Older individuals
- Short hx of MR
- Ruptured or elongated of a single chord
- Remaining segments are normal
- Posterior annulus may be dilated

Fibroelastic Deficiency

Elongated Chordae

Ruptured Chordae

Fibroelastic Deficiency Ruptured chordae off P2

Barlow's Prolapse

Excess leaflet tissue with billowing, thickened leaflets and chordae, large annulus

Barlow's Disease

Barlow's Disease

Type IIIa-Restricted leaflet motion (Systolic and diastolic)

Commissure fusion Leaflet thickening Chordae fusion

Rheumatic valvular disease

Type Illa (Systolic and diastolic Leaflet Restriction)

Commissure fusion Leaflet thickening Chordae fusion

Type IIIa (Systolic and diastolic Leaflet Restriction)

Myxomatous Mitral Valve Disease +Rheumatic Valve Disease

Type IIIb-Restricted leaflet motion (Systolic)

Ventricular dilatation Ventricular dyskinesia

Ischemic mitral valve disease

Ischemic Mitral Regurgitation: "Definition"

Mitral insufficiency that occurs as a result of coronary artery disease, in absence of intrinsic structure abnormalities of the leaflets and subvalvular apparatus(Functional)

Ischemic Mitral Regurgitation

Ischemic Mitral Regurgitation

Ischemic Mitral Regurgitation

Carpentier's Classification System of MR Mechanisms

Factors Affecting Decision on the Patient with MR

When?

- The goal is to operate asymptomatic chronic MR:
 - Late enough in the natural history to justify the risk of intervention, but
 - Early enough to prevent irreversible ventricular dysfunction, pulmonary hypertension, and /or chronic arrhythmia....and sudden death

How?

Mitral valve replacement (Surgical vs percutaneous)

• Mitral valve repair (Surgical vs percutaneous)

• Medical treatment none

Surgical Mitral valve replacement

Mechanical prosthesis

Bovine stented, porcine stented & stentless valves

Percutaneous Mitral Valve Replacement

Figure 2. The first-generation CardiAQ valve (A), Tendyne valve (B), Tiara valve (C), Fortis valve (D).

Clinical History

Relevant history:

57 y/o male

Severe MR - flail segment in the region between P2 and P3 d/t ruptured chordae.

Ht=182cm, Wt=93kg, BMI=30, BSA=2.2, Cr=0.6

<u>PMHx:</u>

SBE

Hemorgic CVA frontal temporal parietal decompressive craniotomy - 2014 LT plegia, wheel chair bound, SZ Heart Stab wound 1989 Low PLT-unclear cause BMB neg. Non significant CAD HTN, GERD FEV1= 22% with Sev. restriction

Pre Tendyne mitral valve replacement

Post Tendyne mitral valve replacement

Post Tendyne mitral valve replacement

Mitral Valve Repair

Simple surgical repair

Annuloplasty Ring

Type 1 (Normal Leaflet Motion) Annulus dilatation

Type 1 (Normal Leaflet Motion) Leaflet Perforation-Patch repair or replacement

Fibroelastic Deficiency (FED)

- Older individuals
- Short hx of MR
- Ruptured or elongated of a single chord
- Remaining segments are normal
- Posterior annulus may be dilated

Spectrum of Degenerative Mitral Valve Disease

Increase repair difficulty

Flail P2 due to ruptured chordae

Flail P2 due to ruptured chordae

Flail P2 due to ruptured chordae

FED-Preserve Tissue No Resection, or Limited Resection Mitral Valve Repair – P2

Post triangular resecton of P2 and annuloplasty with ring

Post triangular resecton of P2 and annuloplasty with ring

Mitral Valve Repair

Complex surgical repair Barlow's disease

Balows's Prolapse---4 chamber

Pre mitral valve repair-Intercommissural view

Pre mitral valve repair-Gastric view

Pre mitral valve repair—mitral valve surgeon's view

Pre mitral valve repair—mitral valve 3D color Doppler

Pre mitral valve repair—mitral valve 3D color Doppler

Hallmarks of Barlow's disease---Large valve size, with diffuse myxomatous changes and excess leaflet tissue, with thickened, elongated chordae

Barlow's-"Remove" Tissue, Targeted Resection, Leaflet Displacement

Mitral Valve Repair

Complex surgical repair Ruptured chordae off A2

Mitral Valve Repair Anterior leaflet

Durability of Mitral Valve Repair

David et al. J Thorac Cardiovasc Surg. 2005 Nov;130(5):1242

Tageted Surgeon Referral: degenerative mitral valve disease

Adams et al. Eur Heart J 2010;31:1958-

Transcatheter mitral repair

Simple mitral lesion with one MR jet

Significant, symptomatic, degenerative mitral regurgitation, high risk for surgery patients

Degenerative

Percutaneous Mitral Repair

Quantitate the severity and location of MR

Guide transseptal puncture and assess the site of puncture

Guiding catheter steering in LA towards mitral valve

Position clip perpendicular to leaflets and opposite A2/P2

Assess residual MR before releasing the clip

Mean gradient=2mmHg

Assess residual mitral regurgitation

3D Live TEE E-valve assessment Intraprocedure

View from left atrium

View from left ventricle

Transcatheter mitral repair

Complex mitral valve prolapse with multiple MR jets

Case

92 year-old woman with multiple comorbidities presented with shortness of breath. He was found to have severe mitral regurgitation due to diffuse mitral valve prolapse.

Pre-MitraClip therapy assessment --TEE

Intercommissural view Deep gastric short axis view

Multiple mitral regurgitation jets along the mitral leaflets with the most mitral regurgitation emanating from the mid to medial segment of mitral valve.

Intraprocedural MitraClip therapy assessment

Intercommissural view Deep gastric short axis view

After implantation of first clip in the mid segment, there is significant reduction of mitral regurgitation

Systolic blood pressure increased from 120mm Hg to 140mmHg

Post MitraClip therapy assessment --TEE

Intercommissural view Deep gastric short axis view

After the second mitral clip implantation, mitral regurgitation reduced to mild

Post MitraClip therapy assessment

Introduction

- A double orifice mitral valve (DOMV) is a rare congenital malformation.
- The hemodynamic impact of DOMV varies from a normally functioning valve to significant mitral regurgitation or stenosis.
- Surgical mitral valve repair has been reported for ruptured chordae associated with DOMV.
- We present a case of successful mitral valve repair using MitraClip for flail mitral leaflet in patient with isolated DOMV assessed by real-time 3D TEE.

86 year old man presented with exertional dyspnea.

Congenital double orifice mitral valve

Diastole

Systole

Noncentral Mitral Regurgitation Congenital Double Orifice Mitral Valve

Pre-MitraClip assessment --TEE

4C Chamber

Intercommissural view

Mitral regurgitation jets emanating from the medial orifice of mitral valve.

Pre-MitraClip assessment --TEE

4 chamber view

Intercommissural view

Mitral regurgitation PISA radius=1.6cm

Pre-MitraClip assessment --TEE

Deep gastric short axis view

Intraprocendure MitraClip assessment --TEE

Post MitraClip therapy assessment-TEE

Post MitraClip therapy assessment-TEE

Transcatheter mitral repair

Failed mitral valve repair

Case

85 year-old woman with multiple comorbidities and previous surgical mitral annuloplasty presented with shortness of breath. She was found to have severe mitral regurgitation and referred for redo surgical mitral valve repair.

Flail posterior leaflet

Pre-percutaneous mitral valve repair

A mid (P2 towards P1) portion of the posterior mitral leaflet is flail due to ruptured chordae.

The flail gap measures 6 mm.

Pre-percutaneous mitral valve repair

Post percutaneous mitral valve repair

After the mitral clip implantation, mitral regurgitation reduced to mild

Introduction

- Hemolytic anemia is one of the rare complications of mitral valve replacement or repair, mostly due to regurgitation around the prosthesis or annuloplasty ring.
- Reoperation is associated with an increased likelihood of a recurrent leak, morbidity, and mortality
- Percutaneous transcatheter closure procedures have been applied to the treatment of paraprosthetic valve leak using a variety of techniques
- We report a case using MitraClip therapy in a patient with hemolytic anemia induced by mitral para-annuloplasty ring leak

A 76 years old man presented with shortness of breath and hemolytic anemia requiring frequent blood transfusion two months after mitral valve repair.

Para-ring mitral regurgitation

TEE: Para-ring mitral regurgitation

TEE: Para-ring mitral regurgitation

TEE: Para-ring mitral regurgitation

Trace intravalvular mitral regurgitation

Pulmonary vein inflot mansmitral valvular gra

Urine color

Pre MitraClip

8 hour post MitraClip

5 month post MitraClip therapy Complete resolution of mitral regurgitation and hemolytic anemia

Transcatheter mitral repair

Degenerative mitral bioprosthetic valve

Transvenous Transseptal Mitral Valve-in- Valve Procedure

Sapien S3 in the 31mm Mosaic bioprosthesis

In case you don't know.....

The word *mitral* (/' maɪtrəl/) comes from Latin, meaning "shaped like a <u>mitre</u>" (bishop's hat). The word *bicuspid* uses <u>combining</u> forms of *bi-*, from Latin, meaning "double", and <u>cusp</u>, meaning "point", reflecting the dual-flap shape of the valve.

Thank You!!!

www.thebodytransformation.com

SV4.0mm 18.4cm

I.

- 100 - 80

-60

-40

- 20 cm/s

-20

-40

100

cm/s

--100

--200

. .

69bpm

75mm/s

63bpm

75mm/s

PISA radius=1.6cm

Flail segment =2.2cm

Case 1---Post Mitral Valve Repair TEE

Case 1--- Post Mitral Valve Repair TEE

ERO=0.3cm2 R volume=60ml