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1. Warm-up (2014 AMC 8 #5): 

Margie's car can go  miles on a gallon of gas, and gas currently costs $  per gallon. How many miles 

can Margie drive on  worth of gas? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2. Beginner (2014 AMC 12B #17): 

Let  be the parabola with equation  and let . There are real 

numbers  and  such that the line through  with slope  does not intersect  if and only 

if  <  < .  

What is ? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

3. Intermediate (2013 AIME II #2):  

Positive integers  and  satisfy the condition 

 

Find the sum of all possible values of . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

4. Advanced (2014 Harvard-MIT Mathematics Tournament #6):  

Given  and  are complex numbers such that  and , find the 

smallest possible value of . Here  denotes the absolute value of a complex 

number, given by  whenever  and  are real numbers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

5. 200-Level (“Gabriel’s Horn”):  

Find a real-valued function such that, when one rotates the graph of said function in the xy-plane 

about the x-axis, the volume is finite but the surface area is infinite. Prove that the function has 

these two properties. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Solutions 

1. Let 𝑚 be the number of miles travelled and 𝑔 be the worth of the particular quantity of 

gas used, then we have that 𝑚 = 32 when 𝑔 = $4, thus 𝑚 = 8𝑔, so if 𝑔 = $4(5) = $20, 

then 𝑚 = 32(5) = 𝟏𝟔𝟎 𝐦𝐢𝐥𝐞𝐬. 

A more realistic methodology would be to say Margie has enough money for 
20

4
= 5 

gallons of gas and therefore can travel 32(5) = 𝟏𝟔𝟎 miles. 

2. By the equation of a line 𝑦 − 𝑦1 = 𝑚(𝑥 − 𝑥1) we have that 𝑦 = 𝑚(𝑥 − 20) + 14 is the 

equation of the line through 𝑄 with slope 𝑚. 𝑃 not intersecting with the line through 𝑄 

means that, when the equation of the line through 𝑄 and the equation of the parabola 𝑃 

are set equal to each other, there are no real solutions. In other words, 

𝑥2 ≠ 𝑚(𝑥 − 20) + 14   ,   𝑥 ∈  𝐑 

What this then comes down to is looking at what 𝑚 makes that true. If the two are not 

equal for real 𝑥 then we have that 

𝑥2 − 𝑚𝑥 + 20𝑚 − 14 ≠ 0   ,   𝑥 ∈ 𝐑 

Recall the quadratic formula: 

𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0  ↔   𝑥 =
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎
 

One should also recall that the “discriminant”, i.e. the portion under the square root, must 

be positive in order to have real solutions. Thus, if we find all 𝑚 such that the 

discriminant is negative, we have found the slopes where the line and the parabola fail to 

intersect.  

Upon identifying 𝑎 to be 1, 𝑏 to be – 𝑚, and 𝑐 to be the entire constant term, 20𝑚 − 14, 

we let the discriminant be less than zero: 

(−𝑚)2 − 4(1)(20𝑚 − 14) = 𝑚2 − 80𝑚 + 56 <  0 

Now, we use one of Vieta’s formulas (see the References section at the end of this 

document) one the polynomial in 𝑚: 

𝑟 + 𝑠 = − (
𝑏

𝑎
) = − (−

80

1
) = 𝟖𝟎 

Note that we could avoid invoking Vieta’s formulas here if we were only to use a 

calculus-based solution as follows …  

The slope of the parabola is 2𝑥 (taking the derivative yields this). Solving for our slope 𝑚 

we find that the slope is also equal to  

14 − 𝑥2

20 − 𝑥
 



Setting these two values for the slope equal to one another yields  

𝑥2 − 40𝑥 + 14 = 0  →   𝑥 = 20 ± √386 

Summing these two possible values yields 40. However, 𝑚 = 2𝑥, so our solution is 80. 

3. Recall the property of logarithms that 𝑏log𝑏(𝑥) = 𝑥 for any base 𝑏, thus  

 
log2(log2𝑎(log2𝑏(21000))) = 0    ↔    log2𝑎(log2𝑏(21000)) = 1   ↔   log2𝑏(21000) = 2a   ↔   21000 = (2𝑏)2𝑎

 

Now, using the property that (𝑎𝑏)
𝑐

= 𝑎𝑏𝑐, we have that  

21000 = 2𝑏2𝑎
    ↔      1000 = 𝑏2𝑎 

We need to find all 𝑎, 𝑏 satisfying this, thus we can find the largest 𝑎 (or 𝑏) and work 

backwards. Then, what is the largest value of 𝑎 such that 1000 is divisible by 2𝑎? One 

can simply check them all and find the answer is 𝑎 = 3. For 𝑎 = 3 we have that 𝑏 = 125. 

Similarly, if 𝑎 = 2 then 𝑏 = 250 and if 𝑎 = 1 then 𝑏 = 500. The sum of all of these is our 

answer: 

3 + 125 + 2 + 250 + 1 + 500 = 𝟖𝟖𝟏 

4. Let 𝑤 + 𝑧 = 𝛼 and 𝑤𝑧 = 𝛽. Then 𝑤2 + 𝑧2 = 𝛼2 − 2𝛽 (square both equations and 

combine) and similarly 𝑤3 + 𝑧3 = 𝛼3 − 3𝛼𝛽. We thus have that |𝛼| = 1 and |𝛼2 − 2𝛽| =

14, and we must minimize |𝛼3 − 3𝛼𝛽|. We begin by factoring out a term of 𝛼, as |𝛼| = 1, 

thus we may minimize |𝛼2 − 3𝛽| and this will suffice.  

Knowing that, without loss of generality due to the fact that we may always appropriately 

rotate our complex plane and our equations lie on circles, 𝛼 = 1 and 𝛼2 − 2𝛽 = 14, we 

may solve for 𝛼3 − 3𝛽 by noting that  

1 − 2𝛽 = 14   →    𝛽 = −
13

2
  

Therefore,  

𝛼3 − 3𝛽 = 1 − (−
13

2
) =

𝟒𝟏

𝟐
 

One who has taken complex analysis will probably recognize that the possible values of 

our squared equation lie on a circle of radius 14 centered at the origin and that the 

possible values of our cubed equation are the image of that circle under a dilation of 3 2⁄ . 

This might help to fully understand the note about not losing generality. 

In practice, one would probably be a bit looser in their thinking of the details, however. 

5. While one could derive this by writing out general integrals for surface area and volume, 

then going through a great deal of not only tedious work but careful consideration (I have 

done this before), the real intention of this question was to create some discussion. Can 

such a function exist? If so, what is that function? 



The answer is something called Gabriel’s Horn or Torricelli’s trumpet, named after the 

Archangel Gabriel and his horn, or the Italian mathematician who first discovered it in the 

1800s.  

The function is simple: 

𝑓(𝑥) =
1

𝑥
   ,   𝑥 ∈ [1, ∞) 

The restricted domain is solely to avoid the asymptote. As long as we avoid that 

asymptote and do not have our bounds at both positive and negative infinity, we still 

have the same basic result, but the volume is, of course, a different numerical value.  

To prove our assertions, let us integrate: 

𝑉 = 𝜋 ∫ (
1

𝑥
)

2

𝑑𝑥 = 𝜋 lim
𝑛→∞

∫ (
1

𝑥
)

2

𝑑𝑥 = 𝜋
𝑛

1

∞

1

lim
𝑛→∞

[
𝑥−1

−1
]

1

𝑛

= 𝜋 lim
𝑛→∞

(−
1

𝑛
− (−1)) = 𝜋(1) = 𝜋 

& 

𝐴 = 2𝜋 ∫
1

𝑥
√1 + (𝑓′(𝑥))

2
𝑑𝑥 = 2𝜋 lim

𝑛→∞
∫

1

𝑥
√1 + (−𝑥−2)2 𝑑𝑥

𝑛

1

∞

1

 

Inspecting the integral a bit, ignoring the limit for now, shows that the integral is strictly 

greater than the same integral without the root part. This is done by the “comparison test 

for improper integrals”, because the integrand 
1

𝑥
√1 + (−𝑥−2)2 > 1 >

1

𝑥
 on the interval 

[0,1), we have that if the smaller diverges, then so does the larger (i.e. if ignoring the 

radical yields a diverging integral, then our integral diverges). 

So, we look at the compared integral. 

2𝜋 lim
𝑛→∞

∫
1

𝑥
 𝑑𝑥

𝑛

1

= 2𝜋 lim
𝑛→∞

ln(𝑛) = 2𝜋(∞) = ∞ 

Since this smaller integral is infinite, so too is the area integral. Thus, the surface area is 

indeed infinite. 

There is a great deal of interesting history behind this including an apparent paradox. 

Moreover, it is provable that there can exist no situation where an object has an infinite 

volume but a finite surface area. Perhaps most interestingly, though, is that if we 

translate this to real world terms (not that this is in any way possible in the real world due 

to physical limitations not taken into the mathematics), we get the following: 

Painter’s Paradox: Seemingly, one could fill the inside of a horn of this shape with paint 

but would require an infinite amount of paint and time to paint the outside. (This assumes 

that the paint does not diminish in thickness rapidly tending toward a zero thickness.) 

The other “paradox” mentioned actually caused dispute among some thinkers of the 

past, most notably Galileo. 

The Illegitimate Paradox of the 𝑿𝒀 Plane: Taking an infinite section of the 𝑥𝑦 plane and 

rotating it about the 𝑥-axis should not be able to yield a finite volume, or so it seems. The 



incorrectness of the notion that this is impossible relates nicely to the divergence of the 

harmonic series, as summing the radii of the disks which are “stacked” to form the horn 

requires one run into the harmonic series, but in actuality you should sum the areas, 

which involve summing the series 1/𝑥2, which converges (as does any power greater 

than 1). 

Disproving the converse is somewhat more complicated and general than proving the 

original case. However, it is possible for a bright undergraduate with some comfortability 

with the limit superior (supremum) to do. In fact, ...  

Exercise: Prove that there exists no continuous function 𝑓: [1, ∞) → [0, ∞)such that the 

solid of revolution of the graph 𝑦 = 𝑓(𝑥) about the 𝑥-axis has the property that it has 

finite surface area but infinite volume. (In other words, prove that if the surface area is 
finite, then the volume is finite.) 

(One can check their proof against the one on Wikipedia at 

https://en.wikipedia.org/wiki/Gabriel%27s_Horn#Converse. Of course, your proof may be 

different and still correct, but it is likely that a reasonable person will develop a proof that 

is essentially the same as the one linked above.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/Gabriel%27s_Horn#Converse


Reference: Vieta’s Formulas: 

Vieta’s formulas can be stated as follows: 

For the polynomial 𝑃(𝑥) = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎1𝑥 + 𝑎0, all of the following hold: 

 

In other terms: 

 

Quoting the Art of Problem Solving website directly, here is some information, including a derivation. 

The proof of these formulas are quite beautiful.  

Vieta's Formulas were discovered by the French mathematician François Viète. 

Vieta's Formulas can be used to relate the sum and product of the roots of a polynomial to its 

coefficients. The simplest application of this is with quadratics. If we have a 

quadratic  with solutions  and , then we know that we can factor it as 

 

(Note that the first term is , not .) Using the distributive property to expand the right side we get 

 

We know that two polynomials are equal if and only if their coefficients are equal, 

so  means that  and . In other 

words, the product of the roots is equal to the constant term, and the sum of the roots is the opposite 

of the coefficient of the  term. 

A similar set of relations for cubics can be found by expanding  

. 

We can state Vieta's formula's more rigorously and generally. Let  be a polynomial of degree , 

so , where the coefficient of  is  and 

As a consequence of the Fundamental Theorem of Algebra, we can also 

write , where  are the roots of . We thus have 

that 

http://artofproblemsolving.com/wiki/index.php/Fran%C3%A7ois_Vi%C3%A8te
http://artofproblemsolving.com/wiki/index.php/Fundamental_Theorem_of_Algebra


 

Expanding out the right hand side gives us 

 

The coefficient of  in this expression will be the th symmetric sum of the . 

We now have two different expressions for . These must be equal. However, the only way for two 

polynomials to be equal for all values of  is for each of their corresponding coefficients to be equal. So, 

starting with the coefficient of , we see that 

 

 

 

 

 

More commonly, these are written with the roots on one side and the  on the other (this can be 

arrived at by dividing both sides of all the equations by ). 

If we denote  as the th symmetric sum, then we can write those formulas more compactly as 

, for . 

 

 

http://artofproblemsolving.com/wiki/index.php/Symmetric_sum

