Notes for Test 2

(2.1-2.4, 7.1, 3.1-3.4)

You may NOT use these notes for the test, but they should help you study.

- Formulas to Know (2.1)

o Distance Formula: $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
o Midpoint Formula: $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$ This should be written as an ordered pair.
o Know how to determine if points form a parallelogram

- Circles (2.2)
o Standard Form: $(x-h)^{2}+(y-k)^{2}=r^{2}$
Remember that when you pull the center (h, k) out of standard form, you have to change the signs!!!
o General Form: $x^{2}+y^{2}+a x+b y+c=0$
o You need to be able to get from General Form to Standard Form (completing the square process)
o Intercepts:
- x-intercept: set $y=0$
- y-intercept: set $x=0$
- Equations of Lines (2.3 and 2.4)
o Special cases:
- $y=4$ (or any number) is a horizontal line with slope $m=0$
- $x=-\frac{2}{3}$ (or any number) is a vertical line with slope $=$ undefined
o If directions say "Find an equation of a line," you must start by using the pointslope formula: $\quad y-y_{1}=m\left(x-x_{1}\right)$
o To find a slope given two points $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
o Forms of lines - Pay attention to the directions. Be sure to use the correct form!
- Point-slope Form: $y-y_{1}=m\left(x-x_{1}\right)$
- Slope Intercept Form: $y=m x+b$
- Standard Form: $A x+B y=C$ (A must be a positive number)
o Parallel lines have the EXACT same slope
o Perpendicular lines have slopes that are opposite in sign and are reciprocals of each other
o Intercepts:
- x-intercept: set $y=0 \quad$ - y-intercept: set $x=0$
o You must be able to graph a line
- Systems of Equations (7.1)
o 2-by-2 systems, use the elimination method
o 2-by-2 systems, use the substitution method
o Know how to set up a 2-by-2 system from a word problem

Notes for Test 2

(2.1-2.4, 7.1, 3.1-3.4)

You may NOT use these notes for the test, but they should help you study.

- Functions (3.1 and 3.2)

o Know the difference between a polynomial, rational, and root functions
0 Finding the domain (without a graph)

- Denominator of a fraction cannot equal $0(\neq 0)$
- Even roots must be positive (≥ 0)
- If there is an even root in the denominator, the root must be positive and cannot be $0(>0)$
- Be sure to express in interval notation

0 Finding the domain and range (with a graph)

- Domain is the set of x-values (how far left and right the graph goes)
- Range is the set of y-values (how far down and up the graph goes)
- Be sure to express in interval notation
o Intervals of increasing, decreasing, and constant
- Use only the x-values of the starting and stopping point
- ALWAYS use parenthesis when writing the interval notation
o Be able to determine if a function is even, odd, or neither
- Even (with a graph) folds perfectly on the y-axis
- Even (without a graph) set $x=-x$ and simplify. If you get the original equation back, then it is even.
- Odd (with a graph) rotate upside down and it is still the same as the original
- Odd (without a graph) set $x=-x$ and $y=-y$ and simplify. If you get the original equation back, then it is odd.
- If none of the above situations are true, the graph is neither even nor odd.
- Transformations (3.3 and 3.4)
o Horizontal Shifts (number is inside parenthesis - shift opposite direction of the sign)
- Shift Left $y=(x+3)^{2}$ number is positive
- Shift Right $y=(x-3)^{2}$ number is negative
o Vertical Shift (number is outside parenthesis - shift same direction of the sign)
- Shift Up $y=x^{2}+3$ number is positive
- Shift Down $y=x^{2}-3$ number is negative
o Horizontal Stretches/Compressions (number is inside parenthesis)
- Stretch $y=\left(\frac{1}{5} x\right)^{2}$ number is smaller than 1 (wider)
- Compression $y=(5 x)^{2}$ number is larger than 1 (skinnier)
o Vertical Stretches/Compressions (number is outside parenthesis)
- Stretch $y=5 x^{2}$ number is larger than 1 (skinnier, but taller)
- Compression $y=\frac{1}{5} x^{2}$ number is smaller than 1 (wider, but shorter)
o Reflections
- About x-axis - multiply everything by -1
- About y-axis - change x to a $-x$

