Simple Interest (Section 8.5) pg. 452

Compound Interest (Section 8.5) pg. 454

$$I = P \cdot R \cdot T$$

$$A = P \cdot (1 + \frac{r}{n})^{n \cdot t}$$

Geometric Formulas

Rectangle

Perimeter: P = 2l + 2w

Area: A = lw

Square

Perimeter: P = 4sArea: $A = s^2$

Triangle

Perimeter: P = a + b + c

Area: $A = \frac{1}{2}bh$

Sum of Angles of Triangle

The sum of the measures of the three angles is 180°.

Pythagorean Theorem (for right triangles)

One 90° (right) angle

 $(a)^2 + (b)^2 = (c)^2$

Trapezoid

Perimeter:

P = a + b + c + B

Area: $A = \frac{1}{2} h (B + b)$

Parallelogram

Perimeter: P = 2a + 2b

Area: A = bh

Circle

Circumference:

 $C = \pi d$ $C = 2\pi r$

Area: $A = \pi r^2$

Rectangular Solid

Volume: V = LWH

Surface Area:

S = 2LW + 2HL + 2HW

Cube

Volume: $V = s^3$

Surface Area: $S = 6s^2$

Right Circular Cylinder

Volume: $V = \pi r^2 h$

Surface Area: $S = 2\pi r^2 + 2\pi rh$

Sphere

Volume: $V = \frac{4}{3} \pi r^3$

Surface Area: $S = 4\pi r^2$

Square-Based Pyramid

Volume: $V = \frac{1}{3} \cdot s^2 \cdot h$