Integration of Genomics into Nursing Practice

Kathleen Calzone, PhD, RN, AGN-BC, FAAN Center for Cancer Research, Genetics Branch National Cancer Institute

Five Misconceptions About the Role of Genomics in Public Health

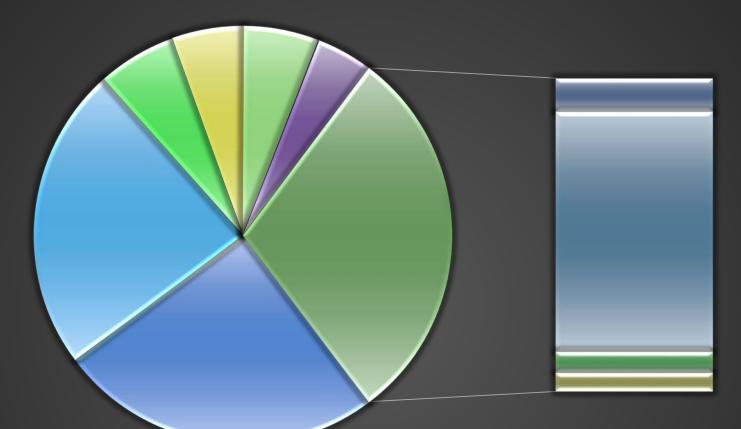
- 1. Genomics is about rare diseases that have a small impact on public health
 - Newborn screening
- 2. Genetic factors are less important than environmental, behavioral, and social determinants of health
 - Could be as many as a third of deaths annually from the 5 leading causes of deaths are potentially preventable by reducing the prevalence of known risk factors

Khoury, M. (2016). Center for Disease Control. Genomics and Health Impact Blog. Five Misconceptions About the Role of Genomics in Public Health

Five Misconceptions About the Role of Genomics in Public Health, cont

- 3. Genetic factors are non-modifiable and therefore merit little or no attention when it comes to public health programs and communication strategies
 - Family history and targeted interventions
- 4. Genomics is about the future. Evidence for using genomic information is not sufficient for use in practice today
 - Predisposition testing, pharmacogenomics, genomic tumor profiling

Khoury, M. (2016). Center for Disease Control. Genomics and Health Impact Blog. Five Misconceptions About the Role of Genomics in Public Health

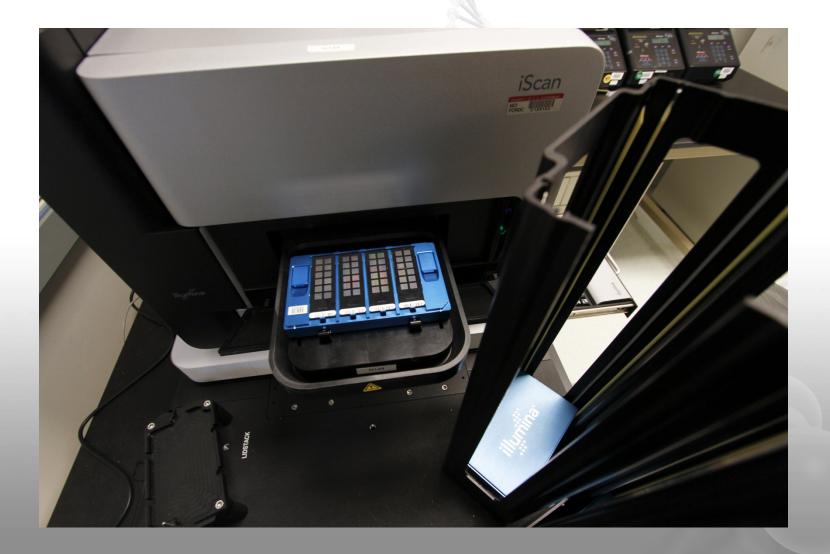

Five Misconceptions About the Role of Genomics in Public Health, cont

- 5. Genomics is in the domain of health care, and thus there is no need for public health programs to be involved
 - Pathogen genome sequencing to track infectious disease outbreak sources, spread, and susceptibility to antibiotics

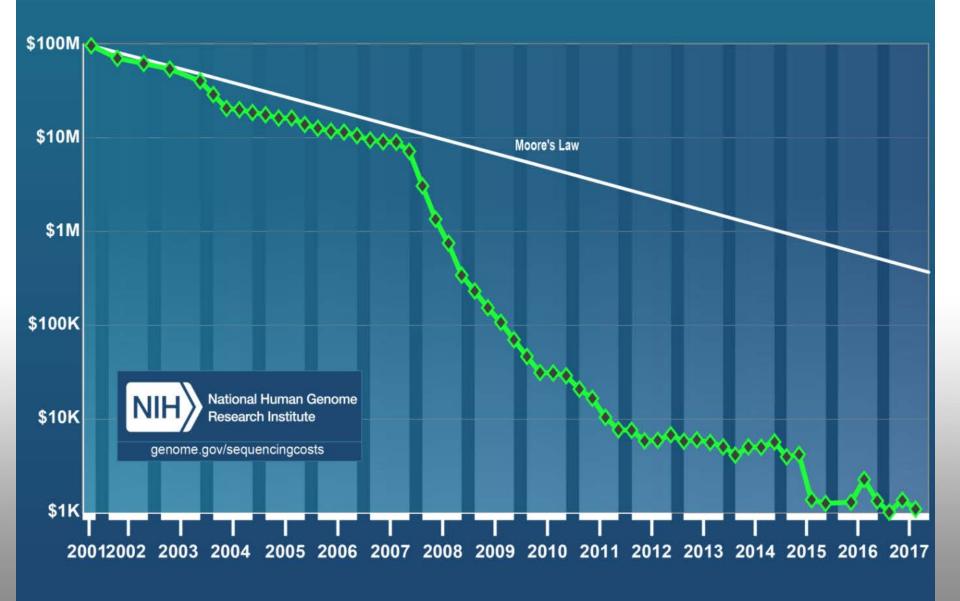
Ebola and the spread into West Africa

Gire et al. (2014). Genomic surveillance elucidates Ebola virus origin and transmission during the 2014 outbreak. Science, 345, 1369-1372 Khoury, M. (2016). Center for Disease Control. Genomics and Health Impact Blog. Five Misconceptions About the Role of Genomics in Public Health

Top 10 Leading Causes of Death


Heart Disease 23.4%
Chronic Respiratory Disease 5.7%
Unintentional Injury 5.4%
Diabetes Mellitus 2.9%
Nephritis 1.8%

Malignant Neoplasms 22.0%


- Cerebrovascular 5.2%
- Alzheimer's Disease 4.1%
- Influenza & Pneumonia 2.1%
- Suicide 1.6%

Heron et al. (2017). Deaths: Leading Causes for 2015. National Vital Statistics Reports. 66, 1-76.

Emerging Science/Technology

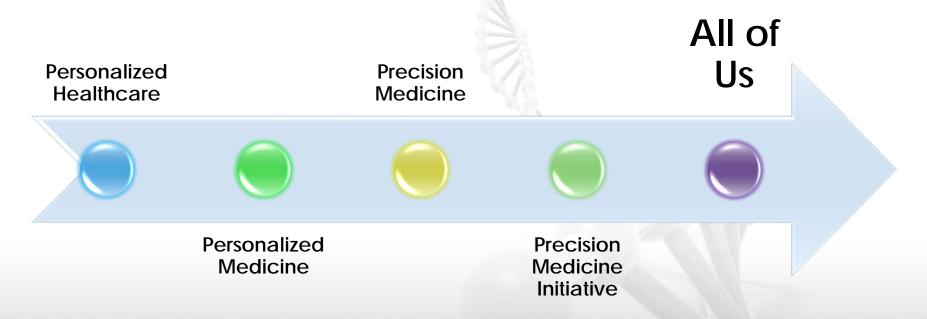
Cost per Genome

https://www.genome.gov/images/content/costpergenome_2017.jpg

The Race for the \$1000 Genome Are we There Yet?

- The ability to sequence someone's entire genome for \$1,000 or less
- Cost in the range of many diagnostic tests so considered realistic for routine clinical application
- Technology has outpaced our capacity for understanding this genomic information to inform and improve healthcare

Mardis, E. (2010). The \$1000 genome, the \$100,000 Analysis. Genome Medicine, 2: 84. Hayden (2014). \$1000 Genome. Nature, 507, 294-295,


Definitions

Genetics – study of individual genes and their impact on relatively rare single gene disorders

Genomics –an organism's complete set of DNA, including all of its genes

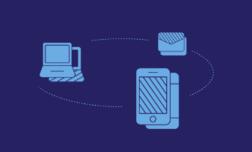
https://ghr.nlm.nih.gov/primer/hgp/genome

Evolving Taxonomy of Genomics and Public Health

Approach for disease treatment and prevention that takes into account individual variability in genes, environment, and lifestyle for each person.

All of Us Research Cohort

Organizations


National Institutes of Health About ~ FUNDING ~ NEWS, EVENTS, & MEDIA All of Us Research Program

SUBSCRIBE

Search

Data & Research Center

Center

Participant Center

https://allofus.nih.gov/about/program-components

Direct to Consumer Marketing and Testing

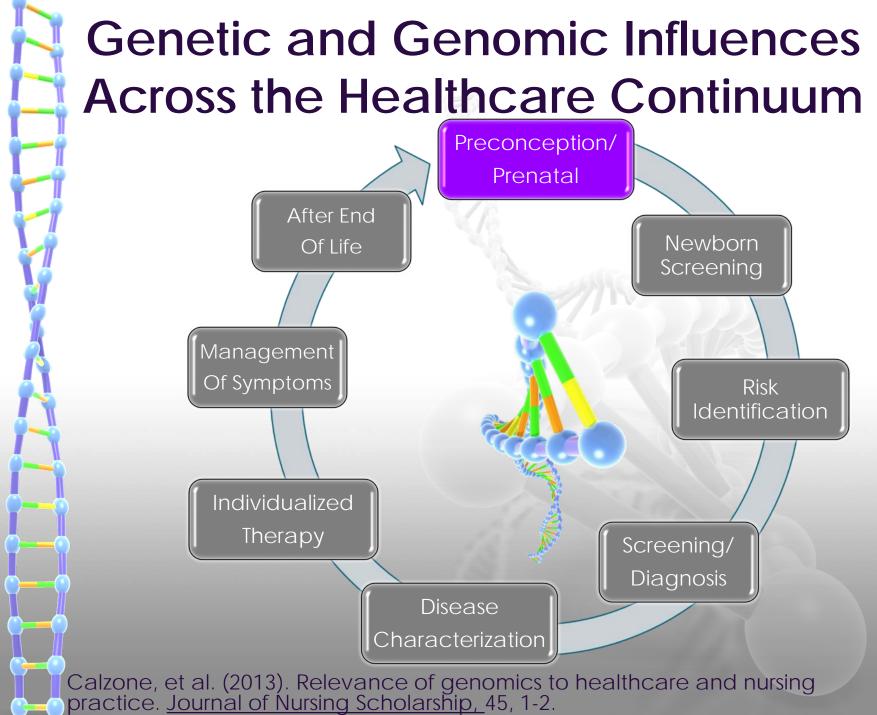
Tests available direct to the consumer without an ordering healthcare provider

- Varied test types and techniques
 - High penetrance diseases
 - Polygenic diseases
 - Risk Assessment
 - Low penetrance genes
 - Enhancement tests
 - Pharmacogenomic
 - Nutrigenomic

 Most require only a saliva sample
 Costs vary based on test but can be as low as \$99

https://www.cancer.gov/about-cancer/causes-prevention/genetics/risk-assessmentpdq#link/_362_toc

Consumer Outcomes Associated with PGT


▶PGEN Study

- Cancer
 - Most adults with elevated cancer risk estimates did not significantly change their diet, exercise, advanced care planning, or cancer screening behaviors
- Non-Cancer

 PGT was associated with modest, mostly positive changes in diet and exercise but were independent of the genetic results

Variant interpretation discordance

Tandy-Connor, S. et al. (2018). False-positive results released by direct-to-consumer genetic tests highlight the importance of clinical confirmation testing for appropriate patient care. GIM, Epub ahead of print. Gray, S.W. et al. (2017). Personal Genomic Testing for Cancer Risk: Results From the Impact of Personal Genomics Study. JCO, 35, 636-644 Nielson, D.E., et al. (2017). Diet and exercise changes following direct-to-consumer personal genomic testing. BMS Med Genomics, 10, 24.

Genomics and the Nursing Workforce

Study	Ν
National Nursing Workforce Study in collaboration with ANA (NNWF)	619
ANA House of Delegates (HOD)	244
National Coalition of Ethnic Minority Nurses (NCEMNA)	389
Expanding RN Scope of Practice: A Method for Introducing a New Competency into Nursing Practice (MINC)	7798

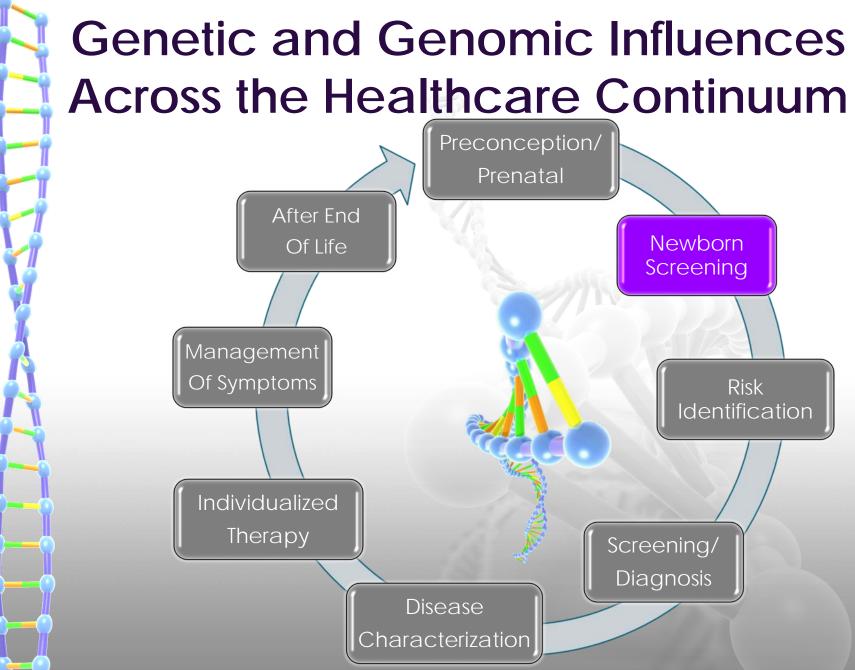
Calzone, K. et al. (2018). Hospital nursing leadership-led interventions increased genomic awareness and educational intent in Magnet settings. Nursing Outlook, Epub ahead of print.

Calzone, K. et al. (2013). National Nursing Workforce Survey of Nursing Attitudes, Knowledge and Practice in Genomics. Personalized Medicine, 10, 719-728.

Badzek et al. (2013). National Nursing Leadership Survey of Attitudes, Knowledge, and Competency in Genomics. American Nurse Today, 8.

Calzone, K., et al. (2014). Expanding RN Scope of Practice: A methods for introducing a new competency into nursing practice. Journal of Nursing Regulation, 5, 40-47

Preconception Prenatal Genetics


Preconception

- Testing for carrier status prior to pregnancy, often for autosomal recessive disorders
 - i.e. MYH associated polyposis (MAP)
- Predisposition cancer genetic testing using chorionic villus sampling and amniocentesis using preimplantation genetic diagnosis

Prenatal testing

- Performed during pregnancy
- Indications include
 - Advanced maternal age
- Non-invasive prenatal screening using cell free fetal DNA testing can identify evidence of malignancy in mother

Wou et al. (2015). Cell-free DNA versus intact fetal cells for prenatal genetic diagnostics: what does the future hold? ERMD,15(8):989-98. Rich et al. (2014). Comparison of attitudes regarding preimplantation genetic diagnosis among patients with hereditary cancer syndromes. FC, Suppl 1:S187-92.

Calzone, et al. (2013). Relevance of genomics to healthcare and nursing practice. Journal of Nursing Scholarship, 45, 1-2.

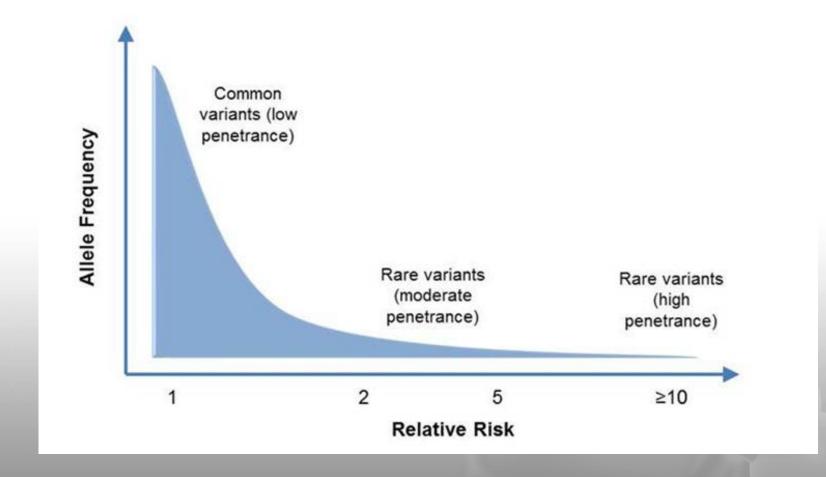
Newborn Screening

Newborn screening consists of a public health approach to the identification and management of health conditions identifiable in the newborn


- Approximately 4 million newborns screened annually
- About12,500 new diagnoses as a result of testing
- Newborn screening constitutes the most extensive
 use of genetics for public health benefit
- All states provide newborn screening
- Conducted using a dried blood spot from a heel prick
- Provide false positive, false negative, or ambiguous results

Newborn Screening, cont

Family members may derive benefit from newborn screening even if there is little to no benefit for the newborn


- Facilitate diagnostic assessments
- Inform future reproduction decisions
- Prepare for care requirements of the child
- Residual dried blood spots can be stored for future uses
 - Policies for the disposition of dried blood spots and research use vary

Exploration of next generation genome technologies (i.e., whole genome sequencing) for newborn screening

Calzone, et al. (2013). Relevance of genomics to healthcare and nursing practice. Journal of Nursing Scholarship, 45, 1-2.

Genetic Architecture of Cancer Risk

PDQ (2018). Genetics of Breast and Ovarian Cancer. Figure 4.

Risk Assessment

- More than 55 hereditary cancer syndromes have been identified
- The most common cancer syndromes are those associated with breast, ovarian, and gastrointestinal cancers
 - Tumor features at diagnosis are now being used as an indication for genetic assessment
- Risk assessment also performed in other healthcare arenas such as cardiovascular diseases
- Germline susceptibility gene testing is available
 - Relevant to individuals whose disease management may be altered
 - At-risk family members

Family History

	In the prior three months nurses seeing patients who RARELY OR NEVER assessed a family history	tients AGREED that family EVER history taking should be	
NNWFS	67%, (n=288/510)	84% (n=369/442)	
HOD	58% (n=59/102)	91% (n=219/242)	
MINC	65% (n=3193/4923)	71% (n=4204/5942)	

Family History, MINC

Question	%(N)
Not at all or only a little confident in deciding what family history information is needed to identify genetic susceptibility to common diseases.	52% (n=3313/6000)
Not at all or only a little confident in deciding which patients would benefit from a referral for genetic counseling and possible testing.	64% (n=3837/5962)
Always Collect:	
Relationship to the patient	72% (n=4010/5591)
Age of diagnosis	29% (n=1617/5566)
Maternal and paternal lineages	53% (n=2953/5551)
Race or ethnic background	33% (n=1819/5533)

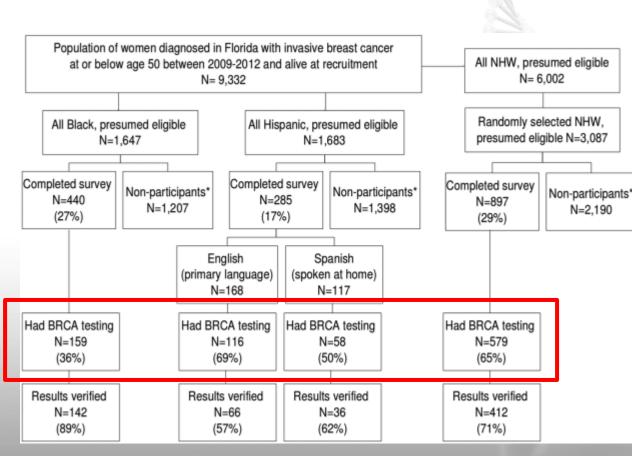
Multi-gene (Panel) Testing

Gene	Ambry Genetics*				University of Washington Laboratory Medicine†	
	CancerNext	BreastNext	ColoNext	OvaNext	BROCA	ColoSeq
APC	•		•		•	٠
ATM	•	•		•	•	
ATR					•	
BABA M1					•	
BAP1					•	
BARD1	•	•		•	•	
BMPR1A			•		•	
BRIP1	•	•		•	•	
CDH1	•	•	•	•	•	•
CDK4					•	
CDKN2A					•	
CHEK1					•	
CHEK2	•	•	•	•	•	
FAM1754/Abraxas					•	
MLH1	•		•	•	•	•
MRE11A	•	•		•	•	
MSH2-positive EPCAM	•		•	•	•	•
MSH6	•		•	•	•	•
MUTYH	•	•	•	•	•	•
NBN	•	•		•	•	
PALB2	•	•		•	•	
PMS2	•		•	•	•	٠
PRSS1					•	
PTEN	•	•	•	•	•	•
RAD50	•	•		•	•	
RAD51					•	
RAD51B					•	
RAD51C	•	•		•	•	
RAD51D					•	
RBBP8					•	
RET					•	
SMAD4	•		•		•	
STKI 1	•	•	•	•	•	•
TP53	•	•	•	•	•	•
TP53BP1					•	
UIMC1					•	
VHL					•	
XRCC2					•	
XRCC3					•	

Domchek et al. (2013). Multiplex genetic testing for cancer susceptibility: Out on the high wire without at net. JCO, 31, 1267-70.

Outcomes of Multi-Gene Panel Testing

- No variants
- Benign or likely benign variant(s)
- Variant(s) of Uncertain Significant
- Pathogenic or Likely Pathogenic variant(s) in a high-penetrance gene
 - concordant with the existing personal/family history
 - discordant with the existing personal/family history
- Pathogenic or Likely Pathogenic variant(s) in a moderate-penetrance gene
- Pathogenic or Likely Pathogenic variant(s) in a gene with uncertain cancer risks and/or cancer associations


Conflicting Genetic Test Interpretations

- 1,191 individuals tested for inherited cancer susceptibility joined PROMPT study
- 518 with 603 genetic variants had a result from more than one laboratory
 - 221 (37%) variant of uncertain significance
 - 191 (32%) as pathogenic
 - 34 (6%) as benign
 - 155 (26%) interpretation differed among reporting laboratories
 - Entire study set 56/518 (11%) had a variant with conflicting interpretations ranging from pathogenic/likely pathogenic to VUS

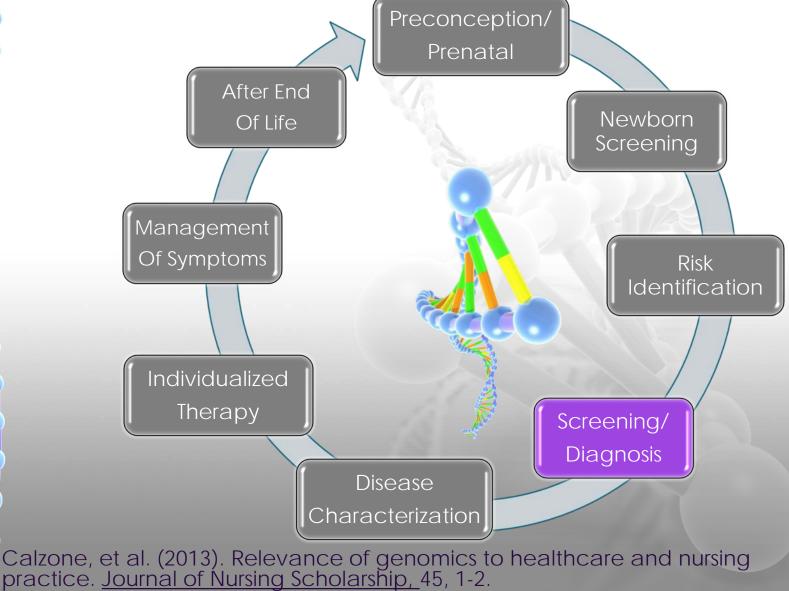
Balmana et al. (2016). Conflicting interpretation of genetic variants and cancer risk by commercial laboratories as assessed by the prospective registry of multiplex testing. JCO, 34, 4071-4078

Racial Disparities in Genetic Testing

>Undergoing testing was associated with having a health care provider discuss testing OR 7.9

Cancer

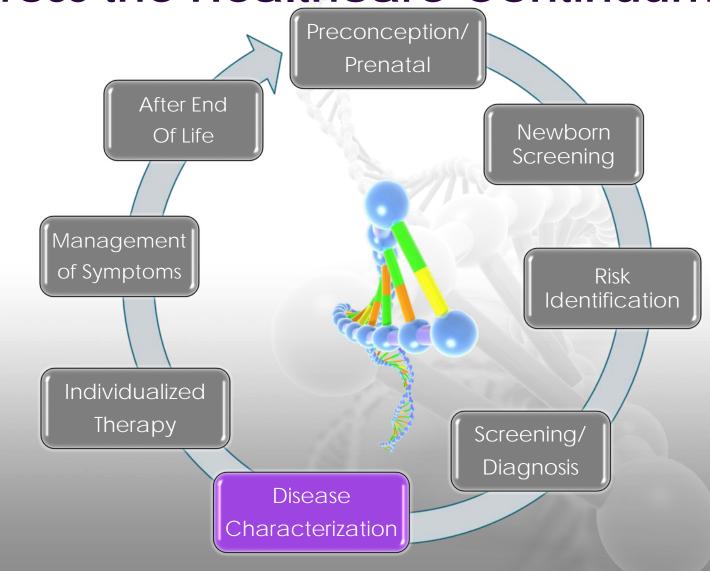
9 FEB 2017 DOI: 10.1002/cncr.30621 Racial disparities in *BRCA* testing and cancer risk management across a population-based sample of young breast cancer survivors


Family History in Nursing Practice

"It's one of those times in your life that you are grateful you had the knowledge."

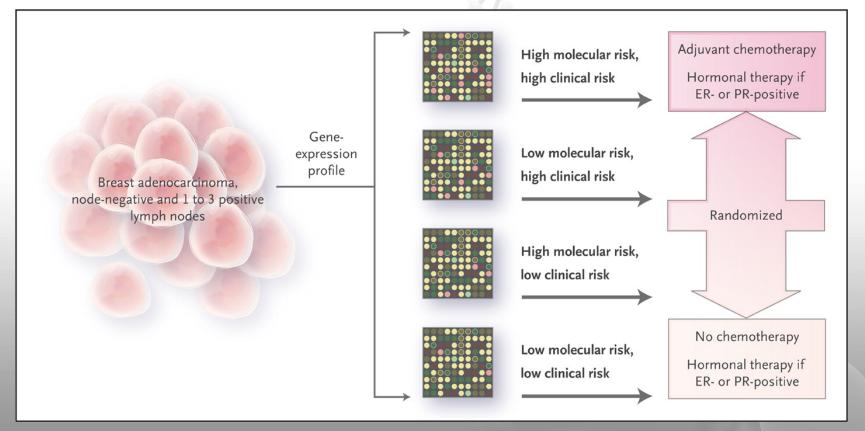
Quote from: Barbara Ganster, RN, BSN Breast Cancer Case Manager National Naval Medical Center

Genetic and Genomic Influences Across the Healthcare Continuum



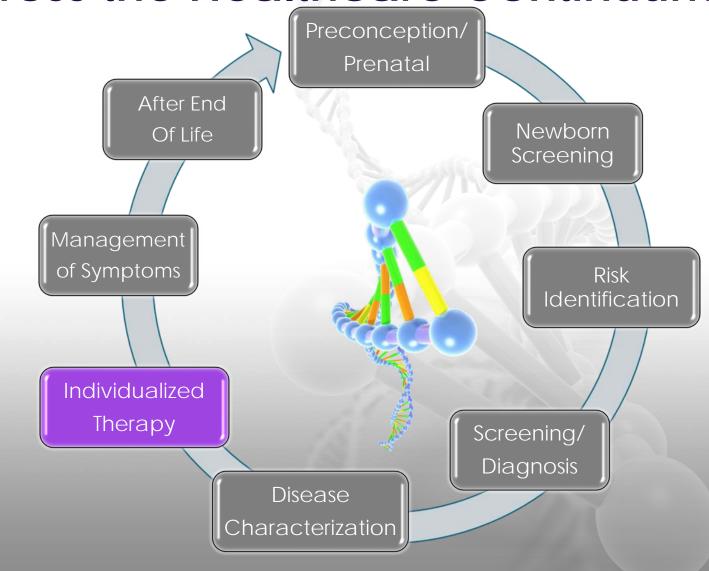
Screening

- Genetic information is being used to personalize health screening recommendations
- SNP test results are being studied as a means to increase the specificity of risk calculation models (i.e. Gail model for breast cancer risk)
- Screening tests that include DNA analysis are being developed such as the multi-target stool DNA test, a less invasive means to screen for colon polyps or cancer
 - Approved by FDA 2014


Imperiale, T. et al. (2014). Multi-target stool DNA testing for colorectal-cancer screening. NEJM, 370,1287-97 Heigh et al. (2014). Detection of colorectal serrated polyps by stool DNA testing: comparison with fecal immunochemical testing for occult blood (FIT). PLoSOne, 9, 9(1)e85659

Genetic and Genomic Influences Across the Healthcare Continuum

Diagnosis/Prognosis


- Establish an accurate diagnosis
- Tumor profiling is being used to identify recurrence risk to guide adjuvant therapy

McDermott et al. (2011). Genomics and the continuum of cancer care, NEJM, 364, 350-360.

Genetic and Genomic Influences Across the Healthcare Continuum

Evolution of Knudson Two Hit Hypothesis

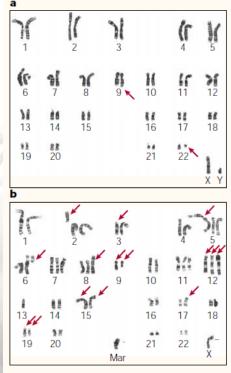
TIMELINE

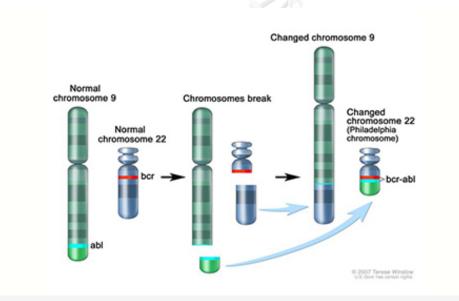
Two genetic hits (more or less) to cancer

Alfred G. Knudson

Most cancers have many chromosomal abnormalities, both in number and in structure, whereas some show only a single aberration. In the era before molecular biology, cancer researchers, studying both human and animal cancers, proposed that a small number of events was needed for carcinogenesis. Evidence from the recent molecular era also indicates that cancers can arise from small numbers of events that affect common cell birth and death processes.

We are now very familiar with the concept that cancer occurs as a consequence of several somatic mutations, but how did this concept first arise? The idea that cancer is a genetic disease of somatic cells — proposed by Theodor Boveri in 1914 (REF. 1) — was prompted by previous observations of aberrant mitoses by David von Hansemann², and by Boveri's own interest in centrosomes and their abnormalities during development (see TIMELINE). Boveri even suggested some consequences of abnormal chromosome numbers, anticipating the contemporary era of tumour-suppressor genes and oncogenes (BOX 1)3. The term 'somatic mutation' was first applied to cancer by Ernest Tyzzer⁴, who observed that tumours sequentially transplanted in mice developed an ever-broadening host specificity among recipients from different inbred strains. Concrete support for the genetic concept came from Hermann J. Muller's⁵ discovery that ionizing radiation, already known to be carcinogenic, is mutagenic. The long latent period between exposure to such radiation and the appearance of most of the inducible cancers further indicated that more than one mutation per cell must be involved⁶. Subsequently, the high incidence of skin




Figure 2 | **A comparison of karyotypes. a** | Chronic myelogenous leukaemia, showing the typical 9;22 translocation and an otherwise normal karyotype. **b** | Non-small-cell carcinoma of the lung, showing abnormalities of both number and structure. The arrows indicate aberrant chromosomes.

NATURE REVIEWS | CANCER

🗱 © 2001 Macmillan Magazines Ltd

Knudson, A.G. (2001). Two genetic hits (more or less) to cancer. Nature Reviews, 1,157-62.

Chronic Myelogenous Leukemia (CML)

CML is caused by one translocation that creates a singular mutation, the BCR-ABL fusion gene or Philadelphia chromosome.

https://www.cancer.gov/research/progress/discovery/gleevec

Targeted Therapy and CML

- 1970's Philadelphia Chromosome
- 1980's fusion protein BCR-ABL
- 1986 discovered this protein produced an abnormal protein, a tyrosine kinase
 - Stimulates uncontrolled cell growth in WBCs
- 1990's Imatinib was developed
- 1998 first in human studies

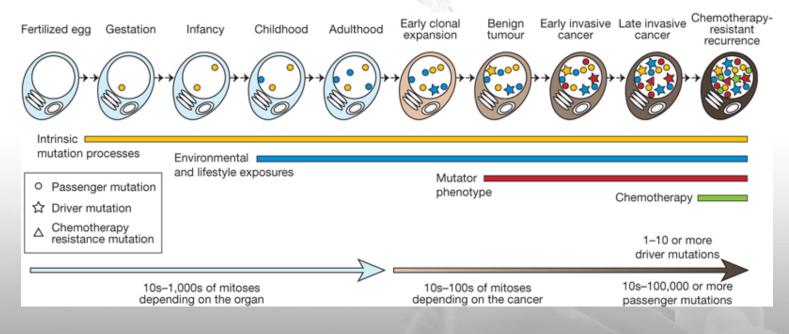
Scope of Targeted Therapies

- Hormones
- Signal transduction inhibitors
- Gene expression modulators
- Apoptosis inducers
- Angiogenesis inhibitors
- Immunotherapies
- Monoclonal antibodies that deliver toxic molecules
- Vaccines

Driver versus Passenger Variants

Driver

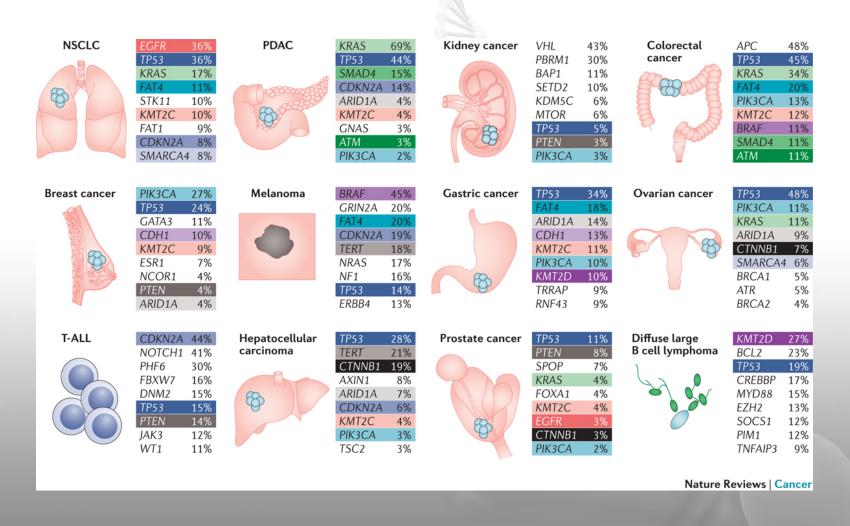
- Growth advantage on the cell
- Does not need to be required for maintenance of the final cancer (although it often is) but it must have been selected at some point along the lineage of cancer


Passenger

- Does not have growth advantage and has therefore not contributed to cancer development
 - a cell that acquires a driver variant will already have biologically inert somatic variants within its genome

Stratton, M.R. et al. (2009). The cancer genomic. Nature 458, 719-724

Somatic Variants and Cancer


The lineage of mitotic cell divisions from the fertilized egg to a single cell within a cancer showing the timing of the somatic mutations acquired by the cancer cell and the processes that contribute to them.

MR Stratton et al. Nature 458, 719-724 (2009) doi:10.1038/nature07943

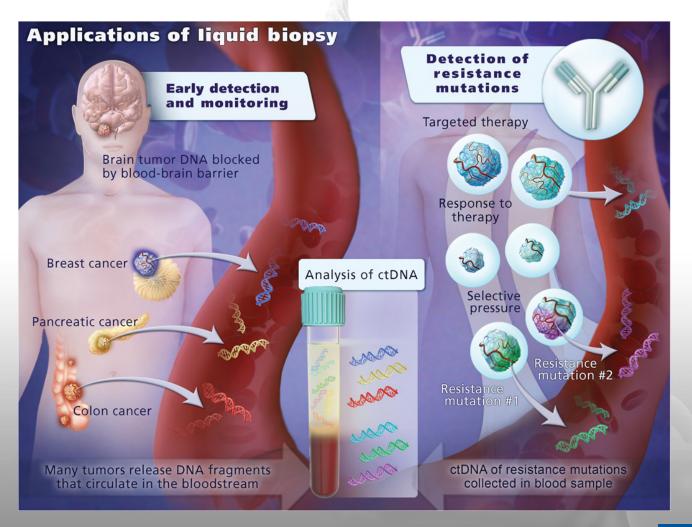
Top Nine Mutations Occurring in Common Cancers

Schneider, et al. (2017). Tissue-specific tumorigenesis: context matters. Nature Reviews Cancer, 17, 239-253.

Cancer Tumor Profiling

- Basket trials hypotheses
 - The presence of a molecular marker predicts
 response to a targeted therapy independent of presence tumor histology.

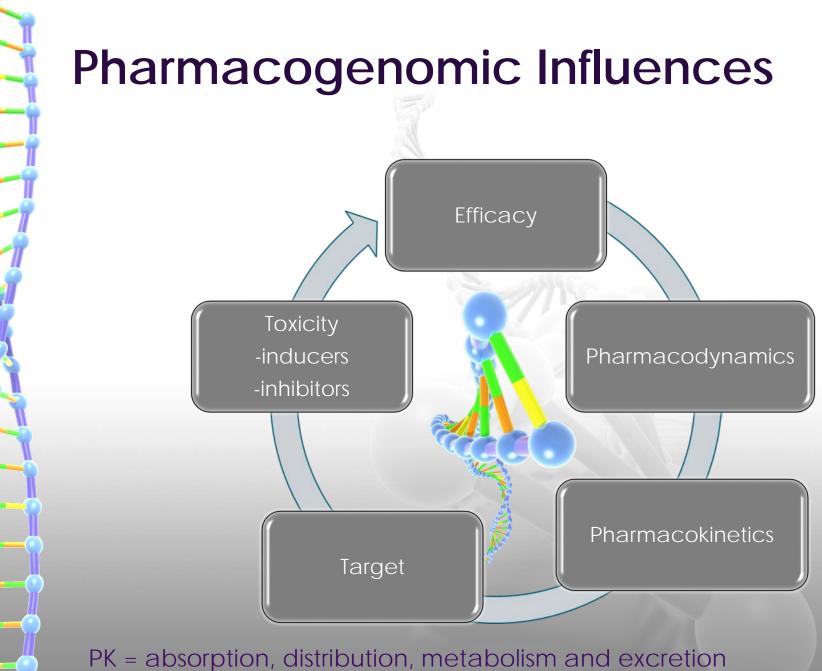
McDermott et al. (2011). Genomics and the continuum of cancer care, NEJM, 364, 350-360. Redig A. et al. (2015). Basket trials and the evolution of clinical trial design in an era of genomic medicine. JCO, 33, 975-7.


Somatic Testing and Germline Incidental Findings

>1566 patients MSK-IMPACT trial

- Pathogenic germline variants identified in 246/1566 patients (15.7%)
 - 198 individuals with mutations in cancer susceptibility genes
- Germline cancer susceptibility genes were concordant with the individual's cancer type in 81/198 cases (40.9%)

Mutations in non-cancer-related Mendelian disease genes were seen in 55/1566 cases (3.5%)
Catenacci DV, et al. (2015). Tumor genome analysis includes germline genome: Are we ready for surprises? Int J Cancer, 136:1559-67.
Raymond VM, et al. (2016). Germline Findings in Tumor-Only Sequencing: Points to Consider for Clinicians and Laboratories. JNCI, 108.
Schrader KA, et al. (2016). Germline Variants in Targeted Tumor Sequencing Using Matched Normal DNA. JAMA oncology, 2, 104-11.


Circulating Tumor DNA

Chetan Bettegowda et al., Sci Transl Med 2014;6:224ra24

Science Translational Medicine

PD = mechanism of action, drug concentration and effect

Polymorphisms and Phenotype

UM-Ultrarapid Metabolizer

- Unusually high activity of a drug metabolizing enzyme (DME) or drug transport protein (DTP)
- Limited response to recommended doses

EM-Extensive Metabolizer

- Wild-type (normal activity) form of a DME or DTP
- Expected efficacy at recommended doses

IM-Intermediate Metabolizer

- Reduced activity of a DME or DTP
- Some decreased efficacy at recommended doses

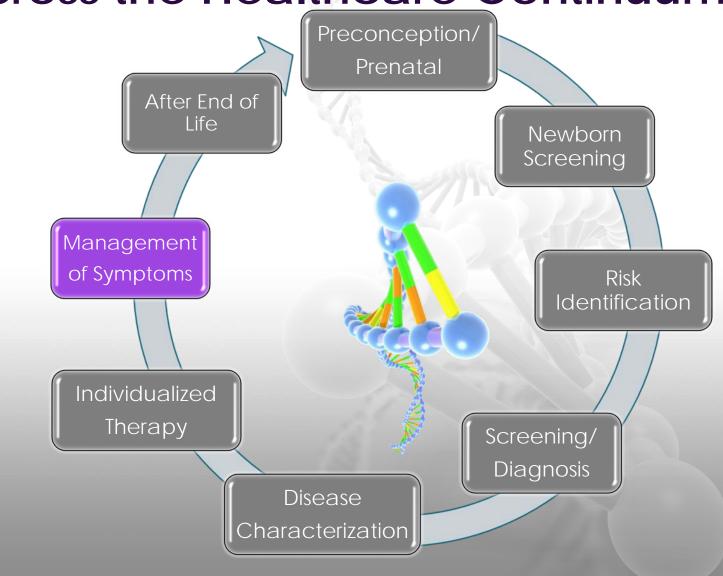
PM-Poor Metabolizer

- Very low or no activity of a DME or DTP
- Increased toxicity
- Decreased efficacy at recommended doses

Katz et al. (2008). Defining drug disposition determinants: A pharmacogeneticpharmacokinetic strategy. Nature Reviews Drug Discovery, 7, 293-305.

FDA Table of Pharmacogenomic Biomarkers in Drug Labeling

Drug labeling may contain information:


- Drug exposure and clinical response variability
- Risk for adverse events
- Genotype-specific dosing
- Mechanisms of drug action
- Polymorphic drug target and disposition genes
- >>200 drugs listed in this table
 - Analgesia, cardiology, endocrinology, gastroenterology, hematology, in-born errors of metabolism, neurology, oncology, infectious disease, psychiatry, rheumatology, toxicology, transplant

http://www.fda.gov/drugs/scienceresearch/researchareas/pharmacogenetics/ucm083378.htm

Pharmacogenomic Considerations

- Pre-emptive versus reactive testing
- Electronic Health Record point of care clinical decision support infrastructure
- Ready access to PharmGKB and Clinical Pharmacogenetics Implementation Consortium (CPIC) Guidelines
 - https://www.pharmgkb.org/

Genetic and Genomic Influences Across the Healthcare Continuum

Polymorphisms and Phenotype

UM-Ultrarapid Metabolizer

- Unusually high activity of a drug metabolizing enzyme (DME) or drug transport protein (DTP)
- Limited response to recommended doses

EM-Extensive Metabolizer

- Wild-type (normal activity) form of a DME or DTP
- Expected efficacy at recommended doses

IM-Intermediate Metabolizer

- Reduced activity of a DME or DTP
- Some decreased efficacy at recommended doses

PM-Poor Metabolizer

- Very low or no activity of a DME or DTP
- Increased toxicity
- Decreased efficacy at recommended doses

Katz et al. (2008). Defining drug disposition determinants: A pharmacogeneticpharmacokinetic strategy. Nature Reviews Drug Discovery, 7, 293-305.

Symptom Management

Priority area of nursing research is the study of the genetic influences of symptom clusters

Pharmacogenomics

- Inhibitors and/or Inducers
 - Implications for:
 - Medications used for other health conditions
 - Selecting medications to control
 - Use of over the counter medications like St. Johns' Wort
 - Consumption of certain foods or supplements like grapefruit/grapefruit juice

Inhibitors and Inducers

Inhibitors

 Reduce the drug metabolizing enzyme or drug transport protein

Inducers

 Increase the drug metabolizing enzyme or drug transport protein

Indiana University Drug Interaction Table

P450 Drug Interaction Table

SUBSTRATES

1A2	2B6	2C8	2C9	2C19	2D6	2E1	3A4,5,7
amitriptyline	artemisinin	amodiaquine		PPIs:	tamoxifen:	Anesthetics:	Macrolide
caffeine ₂	bupropion: cyclophosphamid	cerivastatin	diclofenac: ibuprofen	esomeprazole lansoprazole	TAMOXIFEN GUIDE	enflurane halothane	antibiotics:
clomipramine	efavirenz:	repaglinide	Iornoxicam	omeprazole2	Beta Blockers:	isoflurane	clarithromycin
clozapine	ifosphamide	sorafenib	meloxicam	pantoprazole	carvedilol	methoxyflurane	erythromycin ₂ (not
cyclobenzaprine	ketamine	torsemide	S-naproxen→Nor		S-metoprolol	sevoflurane	3A5)
duloxetine	meperidine		piroxicam	Anti-	propafenone		
	methadone		suprofen	epileptics: diazepam→Nor	timolol	acetaminophen→NAPQ aniline2	
estradiol	nevirapine propafol		Oral	phenytoin(O)	Antidepressants:	benzene	telithromycin
fluvoxamine	selegiline		Hypoglycemic		amitriptyline	chlorzoxazone1	
haloperidol	sorafenib		Agents:	phenobarbitone	clomipramine	ethanol	Anti-
mipramine N-DeMe			tolbutamide		desipramine	N,N-dimethylformamid	arrhythmics:
mexiletine			glipizide	amitriptyline	fluoxetine	theophylline→8-OH	auinidine→3-0H
			A	carisoprodol	imipramine		
nabumetone			Angiotensin II Blockers:		paroxetine		(not 3A5)
naproxen			losartan	chloramphenicol clomipramine	venlafaxine		
olanzapine			irbesartan	clopidogrel	Antipsychotics:		Benzodiazepines
ondansetron				cyclophosphamide			alprazolam
phenacetin₁→			Sulfonylureas	hexobarbital	perphenazine		diazepam→30H
acetaminopher			glyburide	imipramine N-	risperidone→9-OH		midazolam
	1		glibenclamide	DeME	thioridazine		
→NAPQI			glipizide glimepiride	indomethacin	zuclopenthixol		triazolam₂
propranolol			tolbutamide	labetalol	alprenolol		
riluzole			conductarinato	R-mephobarbital moclobernide	amphetamine		Immune
ropivacaine			amitriptyline	nelfinavir	aripiprazole		Modulators:
tacrine ₂			celecoxib	nilutamide	atomoxetine		cyclosporine
theophylline ₂			fluoxetine	primidone	bufuralol.		tacrolimus (FK506)
			fluvastatin	progesterone	chlorpheniramine		tacrolimus (FRSOO)
tizanidine			glyburide	proguanil	chlorpromazine		
triamterene			nateglinide phenytoin-4-OH2	propranolol	clonidine		HIV Antivirals:
verapamil			rosiglitazone	teniposide	codeine (→O-desMe)		indinavir
(R)warfarin			tamoxifen	R-warfarin→8-OH voriconazole	dexfenfluramine		nelfinavir
zileuton			torsemide	Vonconazoie	dextromethorphan.		ritonavir
zolmitriptan			valproic acid		donepezil		saquinavir
zoiminiptan			S-warfarin₁		duloxetine		saquinavir
			zakirlukast		encainide		
					flecainide		Prokinetic:
					fluvoxamine		cisapride
					lidocaine		
					metoclopramide methoxyamphetamine		Antihistamines:
					mexiletine		
					minaprine		asternizole
					nebivolol		chlorpheniramine

http://medicine.iupui.edu/clinpharm/ddis/main-table/

Inducers

0-0

INDUCERS

1A2	288	2C8	2C9	2C19	2D6	2E1	3A4,5,7
broccoli brussel sprouts carbanazepine char-grilled meat insulin	artemisinin carbamazepine efavirenz nevirapine phenobarbital	rifampin ¹	carbamazepine nevirapine phenobarbital rifampin secobarbital	carbamazepine efavirenz norethindrone NOT pentobarbital prednisone	dexamethasone rifampin	ethanol isoniazid	HIV Antivirals: efavirenz nevirapine barbiturates
methylcholanthrene ¹ modafinil nafcillin beta-naphthoflavone ¹ omeprazole ¹ rifampin tobacco	phenytoin rifampin	1	St. John's Wort	rifampicin ¹ ritona vir St. John's Wort		1	carbamazepine glucocorticoids modafinil oxcarbazepine phenobarbital ² phenytoin ² pioglitazone rifabutin rifampin ¹ St. John's Wort troglitazone ¹

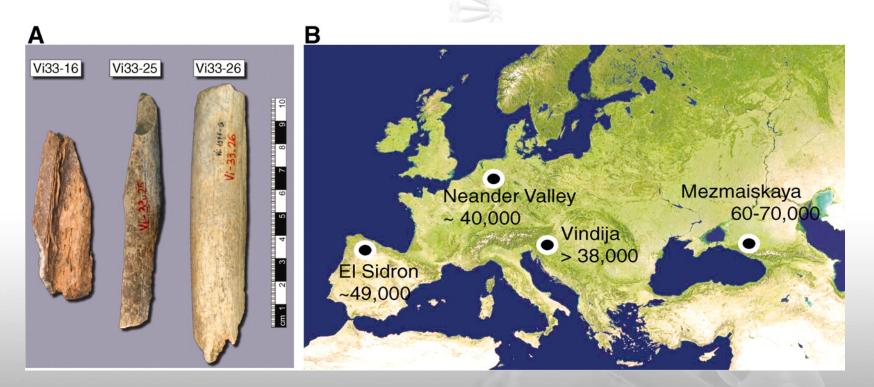
http://medicine.iupui.edu/clinpharm/ddis/main-table/

Inhibitors


Inhibitors compete with other drugs for a particular enzyme thus affecting the optimal level of metabolism of the substrate drug which in many cases affect the individual's response to that particular medication, e.g. making it ineffective.

- A Strong inhibitor is one that causes a > 5-fold increase in the plasma AUC values or more than 80% decrease in clearance.
- A Moderate inhibitor is one that causes a > 2-fold increase in the plasma AUC values or 50-80% decrease in clearance.
- A Weak inhibitor is one that causes a > 1.25-fold but < 2-fold increase in the plasma AUC values or 20-50% decrease in clearance.

FDA preferred1 and acceptable2 inhibitors for in vitro experiments.*


1A2	2B6	2C8	2C9	2C19	2D6	2E1	3A4,5,7
fluvoxamine	clopidogrel		fluconazole ²	PPIs:	bupropion	diethyl-dithiocarbamate ²	HIV Antivirals:
ciprofloxacin	thiotepa	gemfibrozil ²		esomeprazole	cinacalcet	disulfiram	indinavir
	ticlopidine ²		amiodarone	lansoprazole	fluoxetine		nelfinavir
cimetidine	voriconazole		2 - F	omeprazole	paroxetine		ritonavir
amiadarana		trimethoprim	fenofibrate	pantoprature	quinidine ¹		
amiodarone efavirenz		glitazones	fluconazole		duloxetine		clarithromycin
fluoroquinolones		montelukast ¹		Omer:	sertraline		itraconazole ¹
fluvoxamine		quercetin ¹	fluvoxamine ²	chloramphenicol	terbinafine		ketoconazole
furafylline ¹		4	isoniazid	cimetidine			nefazodone
interferon			lovastatin	felbamate	amiodarone		saquinavir
methoxsalen			metronidazole	fluoxetine	cimetidine		suboxone
mibefradil			paroxetine	fluvoxamine			telithromycin
ticlopidine			phenylbutazone	indomethacin	celecoxib		
			probenicid	isoniazid	chlorpheniramine		aprepitant
			sertraline	ketoconazole	chlorpromazine		erythromycin
			sulfamethoxazole sulfaphenazole ¹	^e modafinil	citalopram clemastine		fluconazole
			teniposide	oral	clomipramine		grapefruit juice
			voriconazole	contraceptives	cocaine	7	verapamil ²
			zafirlukast	oxcarbazepine	diphenhydramine		diltiazem
				probenicid	doxepin		
				ticlopidine2	doxorubicin	-	cimetidine
				topiramate	escitalopram		
				voriconazole	halofantrine		amiodarone
					haloperidol		NOT azithromycin
					histamine H1 recepto	r	chloramphenicol
					antagonists hydroxyzine		boceprevir
					levomepromazine		ciprofloxacin
					methadone		delaviridine
					metoclopramide		diethyl-
					mibefradil		dithiocarbamate
					midodrine		fluvoxamine
					moclobemide		gestodene
					perphenazine		

http://medicine.iupui.edu/clinpharm/ddis/main-table/

Example of DNA Stability Neanderthal Genome

Fig. 1 Samples and sites from which DNA was retrieved.

Richard E. Green et al. A Draft Sequence of the Neanderthal Genome. Science 2010;328:710-722

Genetic/Genomic Information

Genetic and/or genomic tests can be performed on stored biospecimens

- Tissue blocks
- DNA banking
- Prior specimen collections
- Collections within 24 hours of death

Considerations in the Genomic Era

>Who is the "patient"

- Individual AND family AND community AND population
- Can be healthy with only a predicted risk for a health condition or suffering from a health condition
- Extend across the lifespan
 - •Fetus through end of life and beyond

Research Ethical Considerations

- Stability of DNA
 - Storage and future use
- Broad sharing of samples/data
- Limited control of downstream use
- Limited right to withdraw
- Identifiability
- Incidental findings
 - Duty to re-contact

Implications for family/community

Kalia SS, et al. (2016). Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMG SF v2.0): a policy statement of the American College of Medical Genetics and Genomics. Genetics in Medicine, ePub Wolf, S., et al. (2012). Managing incidental findings and research results in genomic research involving biobanks and archived data sets. Genetics in Medicine, 14, 361-384 Rodriguez, L.L., et al. (2013). Research ethics: The complexities of genomic identifiability. Science, 339, 275-6.

Research Versus Clinical

Research	Clinical
Obligations	
Production of generalizable knowledge	Delivery of optimal healthcare
Protect participants from harm	Responsible for optimizing healthcare
Preserving the integrity of the research process	Providing care directed to the best interests of the patient
Receipt of information	
Not obligated to return results, but IF return results must meet criteria of analytic and clinical validity	Respect for autonomy
IRB oversight	HIPPA compliance

*Legally-a communication is considered medical practice if it takes place in the **context** of physician/patient relationship and include rendering clinical care.

Burke et al. (2014). Return of results: Ethical and legal distinctions between research and clinical care. AJMG, 166C, 105-111.

Genomic Knowledge

	NNWFS	HOD	NCEMNA	MINC
Rate their understanding of the genetics of common diseases as EXCELLENT or VERY GOOD	14% (n=73/510)	NA	15% (n=53/364)	7% (n=340/5091)
Have heard or read about the Genomic Nursing Competencies	33% (n=166/506)	NA	NA	9% (n=476/5250)
CORRECTLY answered question about whether genomic risk (as indicated by Fm Hx) has clinical relevance for coronary heart disease	99% (n=437/442)	98% (n=216/220)	98% (n=363/372)	99% (n=5108/5138)
INCORRECTLY stated that diabetes and heart disease are caused by a single gene variant	61% (n=268/442)	62% (n=137/220)	54% (n=105/193)	73% (n=3742/5138)

Interprofessional Healthcare Provider Knowledge

Stanek et al. 10,303 US physicians

- 98% agreed that genetic variation may influence drug response
- 10% felt adequately informed about pharmacogenomic (PGx) testing
- 85% had no PGx education in medical school
- 77% had no PGx in post grad training

29% had received PGx education

Stanek, EJ et al. (2012). Adoption of pharmacogenomic testing by US physicians: results of a nationwide survey. CPT, 91, 450-8.

Interprofessional Healthcare Provider Knowledge

Stanek et al. 10,303 US physicians

 MDs with prior PGx education were more likely to have ordered PGx tests (OR1.63, 95% CI 1.34–1.97, P < 0.001)

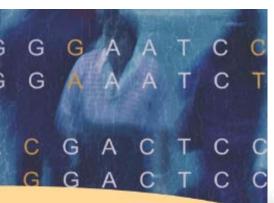
 MDs who felt well informed about the availability and applications of PGx were more likely more likely to order PGx testing (OR 1.92, 95% CI 1.51–2.45, P < 0.001)

Stanek, EJ et al. (2012). Adoption of pharmacogenomic testing by US physicians: Results of a nationwide survey. CPT, 91, 450-8.

Genomic Attitudes

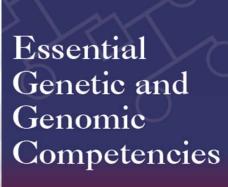
	Reported it was SOMEWHAT OR VERY IMPORTANT for nurses to become more educated about genetics of common disease	Believe senior staff see genetics as an IMPORTANT part of the survey respondent's personal role	WOULD attend a genetics course on their own time
NNWFS	92% (n=572/607)	Not assessed	73% (n=368/506)
HOD	98% (n=239/244)	Not assessed	75% (n=182/240)
NCEMNA	97% (n=372/383)	24% (n=87/356)	Not Assessed
MINC	90% (n=6309/7108)	25% (n=1342/5314)	63% (n=3353/5292)

MINC Genetic Education Impact


	Prior Genetics Education	No Prior Genetics Education	P-value
Reported hearing or reading about the Competencies	24.9%	6.4%	<0.001
Self described genetic/genomic knowledge and Good/Fair	44.6%	29.5%	<0.001
Mean age of nurses reporting genetics in their curriculum	41.8 years	46.1 years	<0.001

Essentials of Genetic and Genomic Nursing

 Define essential genetic and genomic competencies for
 ALL nurses regardless of level of academic preparation, practice setting or specialty


Leveled for nurses with graduate degrees

Both established by a process of consensus

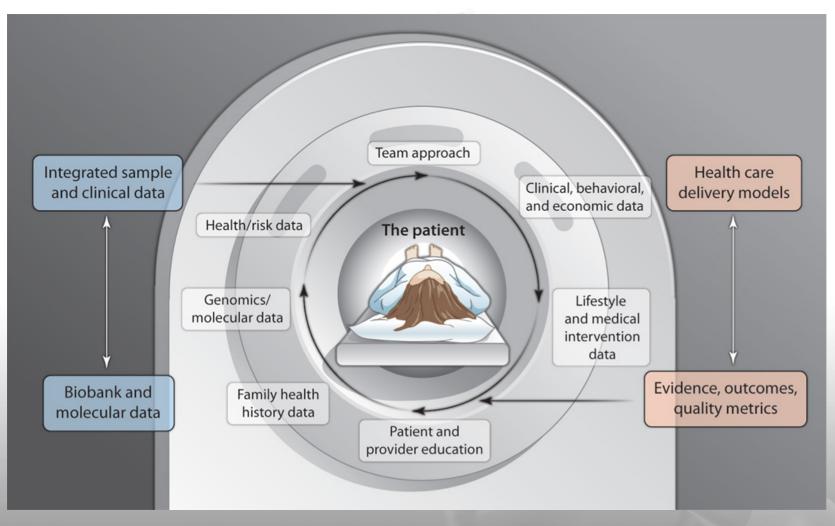
ESSENTIALS OF GENETIC AND GENOMIC NURSING: COMPETENCIES, CURRICULA GUIDELINES AND OUTCOME INDICATORS 2ND EDITION

RICAN NURSES

Established by Consensus Panel September 2011

Jegree with Graduate for Nurses

http://www.genome.gov/Pages/Careers/HealthProfessionalEducation/geneticscompetency.pdf http://nursingworld.org/MainMenuCategories/EthicsStandards/Genetics-1/Essential-Geneticand-Genomic-Competencies-for-Nurses-With-Graduate-Degrees.pdf


The Quest for Personalized Health Care

>Use of an individual's genetic/genomic information In addition to traditional health information to guide health care decision-making

Disease prevention, risk reduction, diagnosis, treatment, symptom management and palliative care

- Pharmacogenomics
 - Medication selection
 - Dose selection
 - Inhibitors
 - Inducers

Personalized Health Care Requirements

Ginsburg G S et al. Sci Transl Med 2011;3:101cm27-101cm27

Science Translational Medicine

Genomics is a Complex Competency

- Little to no foundational underpinning in genomics
 - Differs from other change initiatives i.e. end of life
- Outcomes of appropriately used genomics applications may not be observable
 - Lack of observability slows adoption rates
- The language of genomics is not understood by the general healthcare provider
 - Limits capacity to read and understand the literature

Genomic applications require infrastructure

 i.e. point of care decision support, documentation capacity

Genomics is a Complex Competency, cont

- Waiting for the future workforce to solve this problem is unrealistic
 - Evidence documents that faculty genomic knowledge is equivalent to the students
 - Existing board and certification exams have limited genomic content
- The existing training model that includes clinical experiences is not feasible in the absence of clinical integration
 - Novel strategies for training need to be considered
- This is an interprofessional competency issue

• You may not have a colleague to go to for help

Read, C. et al. (2017). Misconceptions About Genomics Among Nursing Faculty and Students. Nursing Education, Epub ahead of print.

Genetics/Genomics Competency Center

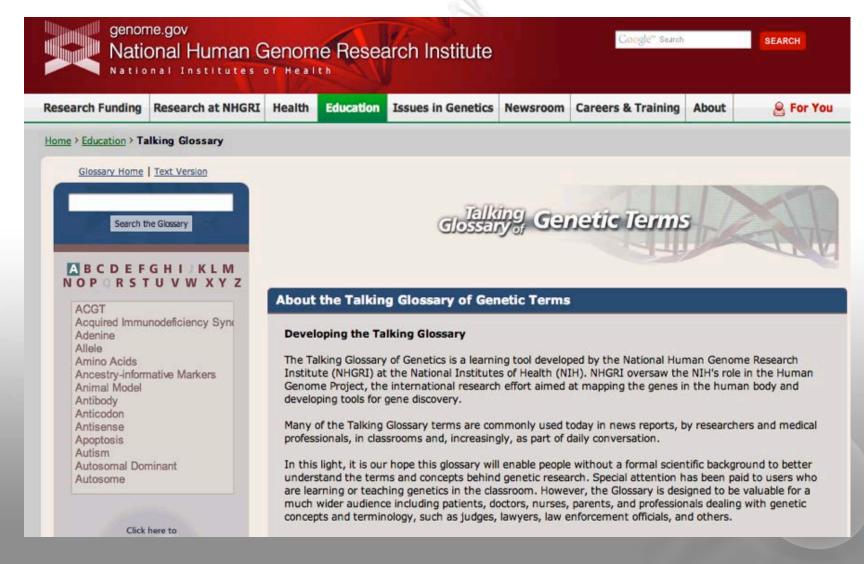
						•	J			
G 2 C 2 GENETICS / GENOMICS COMPETENCY CENTER										
Home	About	Ca	ompetencies	Browse Topics -	2					
		Genetics Enter Search Term or Ph		or Your Classroom or Practice	G 2 C 2 GENETICS / GENOMICS COMPETENCY CENTER					
	-			SEARCH	Home	About	Competencies	Browse	Topics -	
						Se	earch Results			
What	is G2C2?		How to use	G2C2?	Filter Options	You searched for:	pharmacogenomics	Sear	ch Again	
Peer-reviewed collections for genetic counselors, nurses, pharmacists, physician assistants, and physicians Professional editorial board curates every resource Resources are mapped to discipline-specific genomic competencies Save resources for easy Save resources for easy		petencies: Examples for Ge	ns, topics, disciplines, or genomic enetic Counselor Educators and	Click on the selections below to narrow your	pharmacogenomics					
		earch for genomics educational resources sponsored by rofessional societies wave resources for easy retrieval ubmit resources for consideration		search further Clear All	There are 95 results that ma Display 10 • result	-	« 1 2	34	5	
Home	About		Competencies	Browse Topics -	Disciplines	Resource Title		Туре	CME	Cost
					Genetic Counselor (22)	American Association of 0 Genomics	Colleges of Nursing Webinar Series:	Multimedia	No	Free
		Competencies			Pharmacist (57)Physician (22)	ClinGen		Website	No	Free
Nurse	Physician Assistant	Pharmacist	Genetic Counselor	Physician	Physician Assistant (32)	Clinical Pharmacogenetic	s Implementation Consortium (CPIC)	Website	No	Free
COMPETENCIES	COMPETENCIES	COMPETENCIES MAP	COMPETENCIES	COMPETENCIES	CME/CE Availability	HLA-B alleles and adverse carbamazepine and allopu		Other	No	Free
	7	R	R		 Yes (11) No (84) 	International Society of N	urses in Genetics (ISONG)	Society/Organization	-	-
Print Version	Print Version	Print Version	Print Version	Print Version	Cost	ISONG Webinar: Pharmac	ogenetics and Your Clinical Practice	Website	No	Paid
Reference Essentials of	Reference Physician Assistant	Reference Pharmacogenomics Competencies in	Reference Practice-Based	Reference Framework for		NSGC Webinar: Pharmaco Genetic Counselors	ogenetics: Practical Information for	Other	No	Free
Genetic & Genomic Nursing: Competencies, Curricula	Nursing: Competencies Pharmacy Practice: Ger Competencies, (2016) A Blueprint for (20	Competencies for Genetic Counselors (2014) Competencies in Competencies in	Development of Physician Competencies in Genomic Medicine	Paid (20)Free (75)	Personalized Medicine Co	palition	Website	No	Free	
Guidelines, & Outcome Indicators, 2nd Edition (2008)				(2014)	Formats	Pharmacogenomics Educ	ation Program (PharmGenEd)	Website	No	Free
					 Article (12) Book (16) 	RxGenomix Training Prog	ram in Pharmacogenomics	Course	Yes	Paid
		_	_		Course (13)					

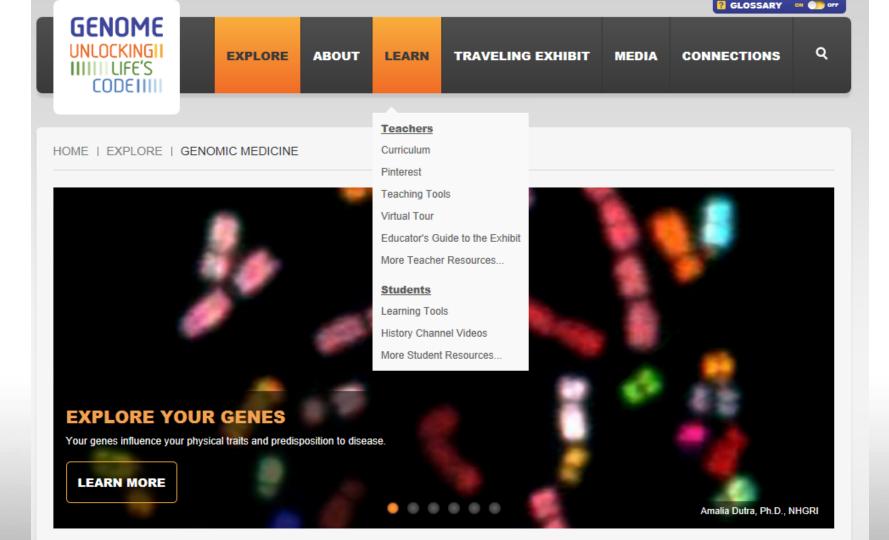
Guideline (30)

Other (16)
 Website (46)

https://genomicseducation.net/

Global Genetics and Genomics Community (G3C)


High Fidelity Simulated Online Unfolding Case Studies


- Ethnically diverse
- Focus on common public health issues
- Portable, web-based, open access
- Interactive, self-paced, selfdirected, unfolding case studies
- >Utilizing professional actors as simulated patients
- Incorporates student/learner education activities and resources
- Faculty support includes suggestions on how to use cases in the curriculum

http://genomicscases.net/en

Talking Glossary http://www.genome.gov/Glossary

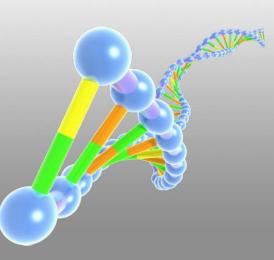
Genomic Medicine

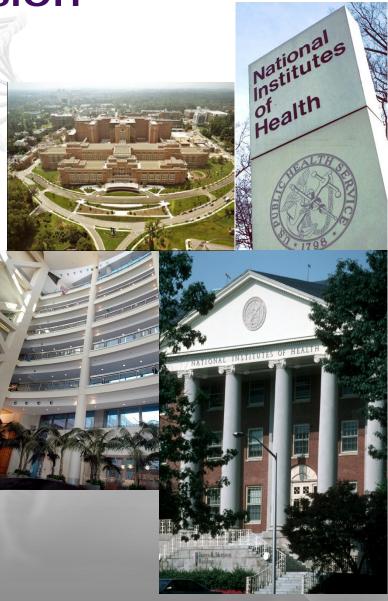
You live at the dawn of an era of discovering and understanding the <u>genome</u>'s role in health and disease. Many medical breakthroughs have already been enabled by <u>genomics</u>: developing ways to combat genetic illness, understanding the <u>microbiome</u>, personalizing health care, and stopping deadly epidemics. Advances in <u>DNA</u> sequencing enable you to investigate your own genome – and scientists are eager to use this knowledge for better bealth care. Explore the advances in genomic medicine and how genomic information can contribute to your

OVERVIEW

EXPLORE GENOMIC MEDICINE

EXPLORE YOUR GENES


http://unlockinglifescode.org/


Summary

- Recognize the relevancy and value of genomics to your role
- Evaluate your personal genomic competency and fill your competency gaps
- Utilize your leadership and skills to be a change agent/champion in your healthcare environment and within your professional organizations
- Recognize policy opportunities to ensure safe, effective and efficient translation of genomic clinical care
- Think creatively and be innovative about designing resources, education, infrastructures that facilitate appropriate adoption of genomics
- National DNA Day-15th Anniversary-April 25, 2018 https://www.genome.gov/dnaday/celebrate/

Questions/Discussion

calzonek@mail.nih.gov 240-760-6178

